Development, synthesis, classification and characterization techniques of geopolymer cement - a review

Development, synthesis, classification and characterization techniques of geopolymer cement - a review

Authors

  • Edith Cherotich Department of Chemistry, Dedan Kimathi University of Technology, Kiganjo/Mathari, B5, Dedan Kimathi, Nyeri Private Bag 10143, Kenya
  • Esther Wanja Nthiga Department of Chemistry, Dedan Kimathi University of Technology, Kiganjo/Mathari, B5, Dedan Kimathi, Nyeri Private Bag 10143, Kenya
  • Gerald Muthakia Department of Chemistry, Dedan Kimathi University of Technology, Kiganjo/Mathari, B5, Dedan Kimathi, Nyeri Private Bag 10143, Kenya
  • Peterson Kugeria Mutembei Department of Chemistry, Tharaka University, Along Chiakariga-Marimanti-Ura-gate, P.O Box 193-60215 Marimanti, Kenya.

DOI:

https://doi.org/10.13171/mjc02504051808cherotich

Abstract

The manufacture of Ordinary Portland Cement (OPC) involves significant energy consumption, dust emission into the atmosphere, and the release of carbon dioxide gas (CO2) release. This leads to climate change and environmental concerns. A geopolymer binder is an inorganic polymer produced when aluminosilicates and alkalis undergo a polycondensation reaction. They have three-dimensional aluminosilicate frameworks that are amorphous or semi-crystalline and are made by the accompanying tetrahedral (SiO4)4- and (AlO4)5-. They can be synthesized using a variety of industrial by-products and natural aluminosilicate materials such as blast furnace slag, fly ash, rice husk ash, and metakaolin. Geopolymers exhibit excellent mechanical properties such as compressive strength and resistance to chemical attack. Geopolymers' durability and mechanical performance have attracted a lot of attention recently in the building and research sector because utilizing geopolymers as a sustainable alternative to OPC would significantly reduce GreenHouse Gases (GHG) emissions. Numerous studies have reported that geopolymer cement is a possible substitute for OPC in sustainable building materials since it has been shown to have better mechanical qualities, increased durability, and reduced carbon emissions. The present review highlights the synthesis techniques and classification of geopolymer cement based on materials utilized in their production, geopolymer concrete characterization techniques based on fresh and mechanical properties, and the durability performance since the last decade. The review also features the current development and applications of geopolymer cement. This review will provide the need for continuous research and development efforts to maximize geopolymer performance, enhance its properties, and expand its application ranges in the construction industry.

Author Biographies

Esther Wanja Nthiga, Department of Chemistry, Dedan Kimathi University of Technology, Kiganjo/Mathari, B5, Dedan Kimathi, Nyeri Private Bag 10143, Kenya

Senior Lecturer

Gerald Muthakia, Department of Chemistry, Dedan Kimathi University of Technology, Kiganjo/Mathari, B5, Dedan Kimathi, Nyeri Private Bag 10143, Kenya

Professor

References

- M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production—present and future, Cem Concr Res, 2011, 41, 642–650.

- C. Chen, G. Habert, Y. Bouzidi, A. Jullien, Environmental impact of cement production: detail of the different processes and cement plant variability evaluation, J Clean Prod, 2010, 18, 478–485.

- A. J. Singh Gaharwar Jaypee Sidhi, M. Naveen Gaurav, H. Singh Gariya, A. Singh Gaharwar, N. Gaurav, A. Singh, A Review Article on Manufacturing Process of Cement, Environmental Attributes, Topography and Climatological Data Station: IMD, Sidhi M.P, ~ 47 ~ J Med Plants Stud, 2016, 4, 47–53.

- S. Sutar, P. Patil, R. Chavan, M. Maske, Study and Review of Ordinary Portland Cement, ASEAN J Sci Eng, 2021, 1, 153–160.

- N. Mohamad, K. Muthusamy, R. Embong, A. Kusbiantoro, M. H. Hashim, Environmental impact of cement production and Solutions: A review, Mater Today Proc, 2022, 48, 741–746.

- V. Zivica, M. Palou, M. Križma, Geopolymer Cements and Their Properties: A Review, Build Res J, 2015, 61 doi:10.2478/brj-2014-0007.

- K. M. Rahla, R. Mateus, L. Bragança, Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC), J Clean Prod, 2019, 220, 445–459.

- Y. G. Adewuyi, Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation, ACS Omega, 2021, 6, 15532–15542.

- S. Kavitha, S. C. R, Geopolymer Concrete as a Sustainable Material With Wastes-Anoverview, Int J Eng Res Appl www.ijera.com, 2022, 12, 136–142.

- L. O. Cortat, N. C. Zanini, R. F. S. Barbosa, A. G. de Souza, D. S. Rosa, D. R. Mulinari, A Sustainable Perspective for Macadamia Nutshell Residues Revalorization by Green Composites Development, J Polym Environ, 2021, 29, 3210–3226.

- M. Amran, S. Debbarma, T. Ozbakkaloglu, Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties, Constr Build Mater, 2021, 270, 121857.

- H. Zain, M. M. A. B. Abdullah, K. Hussin, N. Ariffin, R. Bayuaji, Review on Various Types of Geopolymer Materials with the Environmental Impact Assessment, MATEC Web Conf, 2017, 97, 1021.

- E. Worrell, A. P. C. Faaij, G. J. M. Phylipsen, K. Blok, An approach for analysing the potential for material efficiency improvement, Resour Conserv Recycl, 1995, 13, 215–232.

- S. Luo, M. Liu, L. Yang, J. Chang, W. Yang, X. Yan, H. Yu, Y. Shen, Utilization of waste from alumina industry to produce sustainable cement-based materials, Constr Build Mater, 2019, 229, 116795.

- E. Gartner, T. Sui, Alternative cement clinkers, Cem Concr Res, 2018, 114, 27–39.

- M. M. A. B. Abdullah, H. Kamarudin, M. Binhussain, K. Nizar, wan mastura wan ibrahim, Mechanism and Chemical Reaction of Fly Ash Geopolymer Cement- A Review, J Asian Sci Res, 2011, 1, 247–253.

- J. Davidovits, Geopolymer Cement a review 2013, , 2013, , 1–11.

- S. Sbahieh, G. McKay, S. G. Al-Ghamdi, Comprehensive Analysis of Geopolymer Materials: Properties, Environmental Impacts, and Applications, Materials (Basel), 2023, 16, 7363.

- S. S. Alterary, N. H. Marei, Fly ash properties, characterization, and applications: A review, J King Saud Univ - Sci, 2021, 33, 101536.

- S. Philip, M. Nidhi, A review on the material performance of geopolymer concrete as green building materials, Mater Today Proc, 2023 doi:10.1016/j.matpr.2023.04.110.

- D. A. Salas, A. D. Ramirez, N. Ulloa, H. Baykara, A. J. Boero, Life cycle assessment of geopolymer concrete, Constr Build Mater, 2018, 190, 170–177.

- C. Jiang, A. Wang, X. Bao, T. Ni, J. Ling, A review on geopolymer in potential coating application: Materials, preparation and basic properties, J Build Eng, 2020, 32, 101734.

- R. Kalombe, V. Ojumu, C. Eze, S. Nyale, J. Kevern, L. Petrik, Fly Ash-Based Geopolymer Building Materials for Green and Sustainable Development, Materials (Basel), 2020, 13 doi:10.3390/ma13245699.

- G. L. Golewski, The Effect of the Addition of Coal Fly Ash (CFA) on the Control of Water Movement within the Structure of the Concrete, Materials (Basel), 2023, 16, 5218.

- N. B. Singh, S. K. Saxena, M. Kumar, S. Rai, Geopolymer cement: Synthesis, characterization, properties and applications, Mater Today Proc, 2019, 15, 364–370.

- A. M. Guerrero, R. A. Robayo-Salazar, R. M. de Gutiérrez, A novel geopolymer application: Coatings to protect reinforced concrete against corrosion, Appl Clay Sci, 2017, 135, 437–446.

- R. A. M. Figueiredo, A. B. M. Silveira, E. L. P. Melo, G. Q. G. Costa, P. R. G. Brandão, M. T. P. Aguilar, A. B. Henriques, D. B. Mazzinghy, Mechanical and chemical analysis of one-part geopolymers synthesised with iron ore tailings from Brazil, J Mater Res Technol, 2021, 14, 2650–2657.

- S. Pilehvar, S. G. Sanfelix, A. M. Szczotok, J. F. Rodríguez, L. Valentini, M. Lanzón, R. Pamies, A.-L. Kjøniksen, Effect of temperature on geopolymer and Portland cement composites modified with Micro-encapsulated Phase Change materials, Constr Build Mater, 2020, 252, 119055.

- E. A. Marouane, H. Saufi, B. Aouan, R. Bassam, S. Alehyen, Y. Rachdi, H. El Hadki, A. El Hadki, J. Mabrouki, S. Belaaouad, H. Ez-Zaki, N. Barka, A comprehensive review of synthesis, characterization, and applications of aluminosilicate materials-based geopolymers, Environ Adv, 2024, 16, 100524.

- G. Gaurav, S. C. Kandpal, D. Mishra, N. Kotoky, A comprehensive review on fly ash-based geopolymer: a pathway for sustainable future, J Sustain Cem Mater, 2023, 13, 100–144.

- D. Dimas, I. Giannopoulou, D. Panias, Polymerization in sodium silicate solutions: A fundamental process in geopolymerization technology, J Mater Sci, 2009, 44, 3719–3730.

- J. Davidovits, S. France, Geopolymer chemistry and sustainable development Geopolymer chemistry and sustainable Development . The Poly (sialate) terminology : a very useful and simple model for the promotion and understanding of green-chemistry., Conf Pap, 2019, , 9–15.

- P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, J. S. J. van Deventer, Geopolymer technology: the current state of the art, J Mater Sci, 2007, 42, 2917–2933.

- J. L. Provis, R. J. Myers, C. E. White, V. Rose, J. S. J. van Deventer, X-ray microtomography shows pore structure and tortuosity in alkali-activated binders, Cem Concr Res, 2012, 42, 855–864.

- N. Cristelo, P. Tavares, E. Lucas, T. Miranda, D. Oliveira, Quantitative and qualitative assessment of the amorphous phase of a Class F fly ash dissolved during alkali activation reactions – Effect of mechanical activation, solution concentration and temperature, Compos Part B Eng, 2016, 103, 1–14.

- D. Ren, C. Yan, P. Duan, Z. Zhang, L. Li, Z. Yan, Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack, Constr Build Mater, 2017, 134, 56–66.

- P. Cong, Y. Cheng, Advances in geopolymer materials: A comprehensive review, J Traffic Transp Eng (English Ed, 2021, 8, 283–314.

- L. Alves, A. Nogueira, J. Dos Santos, S. de Barros, A Quick Overview on Geopolymer Chemistry and General Properties, Res Dev Mater Sci, 2019, 12 doi:10.31031/rdms.2019.12.000781.

- X. Y. Zhuang, L. Chen, S. Komarneni, C. H. Zhou, D. S. Tong, H. M. Yang, W. H. Yu, H. Wang, Fly ash-based geopolymer: clean production, properties and applications, J Clean Prod, 2016, 125, 253–267.

- N. B. Singh, B. Middendorf, Geopolymers as an alternative to Portland cement: An overview, Constr Build Mater, 2020, 237, 117455.

- E. Obonyo, E. Kamseu, P. Lemougna, A. B. Tchamba, U. Melo, C. Leonelli, A Sustainable Approach for the Geopolymerization of Natural Iron-Rich Aluminosilicate Materials, Sustainability, 2014, 6, 5535–5553.

- Y. Cao, P. Z. Tao, Z. Pan, T. Murphy, R. Wuhrer, Fire resistance of fly ash-based geopolymer concrete blended with calcium aluminate cement, , 2017.

- S. T. Blessen, J. Yang, A. Bahurudeen, S. N. Chinnu, J. A. Abdalla, R. A. Hawileh, H. M. Hamada, Geopolymer concrete incorporating recycled aggregates: A comprehensive review, Clean Mater, 2022, 3, 100056.

- M. Lahoti, K. H. Tan, E.-H. Yang, A critical review of geopolymer properties for structural fire-resistance applications, Constr Build Mater, 2019, 221, 514–526.

- T. Lingyu, H. Dongpo, Z. Jianing, W. Hongguang, Durability of geopolymers and geopolymer concretes: A review, Rev Adv Mater Sci, 2021, 60, 1–14.

- J. Temuujin, W. Rickard, M. Lee, A. van Riessen, Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings, J Non Cryst Solids, 2011, 357, 1399–1404.

- D. D. Burduhos Nergis, M. M. A. B. Abdullah, P. Vizureanu, M. F. Mohd Tahir, Geopolymers and Their Uses: Review, IOP Conf Ser Mater Sci Eng, 2018, 374 doi:10.1088/1757-899X/374/1/012019.

- M. Mayouf, R. Jones, I. Ashayeri, A. Nikologianni, Methods of Construction to the Meet Housing Crisis in the UK Residential Sector: A Comparative Study between Timber Frame and Masonry Construction, Buildings, 2022, 12, 1177.

- A. M. Nurul, H. Kamarudin, R. A. Rafiza, T. A. F. Meor, M. Rosnita, Compressive Strength of Fly Ash Geopolymer Concrete by Varying Sodium Hydroxide Molarity and Aggregate to Binder Ratio, IOP Conf Ser Mater Sci Eng, 2020, 864, 12037.

- R. Junru, C. Huiguo, D. Ruixi, S. Tao, Behavior of combined fly ash/GBFS-based geopolymer concrete after exposed to elevated temperature, IOP Conf Ser Earth Environ Sci, 2019, 267, 32056.

- A. Ojha, P. Aggarwal, Durability performance of low calcium Flyash-Based geopolymer concrete, Structures, 2023, 54, 956–963.

- N. Janošević, D.-V. Snezana, G. Toplicic-Curcic, J. Karamarkovic, Properties of geopolymers, Facta Univ - Ser Archit Civ Eng, 2018, 16, 45–56.

- M. Abbass, G. Singh, Impact strength of rice husk ash and basalt fibre based sustainable geopolymer concrete in rigid pavements, Mater Today Proc, 2022, 61, 250–257.

- B. Prabu, A. Shalini, J. S. K. Kumar, Rice Husk Ash Based Geopolymer Concrete – A Review, , 2014.

- M. R. F. Gonçalves, C. P. Bergmann, Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure, Constr Build Mater, 2007, 21, 2059–2065.

- S. M. Zabihi, H. Tavakoli, E. Mohseni, Engineering and Microstructural Properties of Fiber-Reinforced Rice Husk–Ash Based Geopolymer Concrete, J Mater Civ Eng, 2018, 30, 4018183.

- M. B. Ahsan, Z. Hossain, Supplemental use of rice husk ash (RHA) as a cementitious material in concrete industry., Constr Build Mater, 2018, 178, 1–9.

- Saloni, Parveen, Y. Yan Lim, T. M. Pham, Influence of Portland cement on performance of fine rice husk ash geopolymer concrete: Strength and permeability properties, Constr Build Mater, 2021, 300, 124321.

- P. Nuaklong, P. Jongvivatsakul, T. Pothisiri, V. Sata, P. Chindaprasirt, Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete, J Clean Prod, 2020, 252, 119797.

- P. Nath, P. K. Sarker, Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition, Constr Build Mater, 2014, 66, 163–171.

- I. Perná, T. Hanzlíček, The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method, J Clean Prod, 2016, 112, 1150–1155.

- G. Mallikarjuna, T. D. Gunneswara, A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete, Aust J Civ Eng, 2018, 16, 53–63.

- A. S. Faried, W. H. Sofi, A.-Z. Taha, M. A. El-Yamani, T. A. Tawfik, Mix Design Proposed for Geopolymer Concrete Mixtures Based on Ground Granulated Blast furnace slag, Aust J Civ Eng, 2020, 18, 205–218.

- L. C. Keong, M. R. Rowles, G. N. Parnham, T. Htut, T. S. Ng, Investigation of geopolymers containing fly ash and ground-granulated blast-furnace slag blended by amorphous ratios, Constr Build Mater, 2019, 222, 731–737.

- D. Suresh K. Nagaraju, Ground Granulated Blast Slag (GGBS) In Concrete – A Review, IOSR J Mech Civ Eng, 2015, 12, 76–82.

- M. Shariq, J. Prasad, A. Masood, Effect of GGBFS on time dependent compressive strength of concrete, Constr Build Mater, 2010, 24, 1469–1478.

- J. Jawahar, G. Mounika, Strength Properties of Fly Ash and GGBS based Geo polymer concrete, Asian J Civ Eng, 2016, 17, 127–135.

- R. Li, T. Liu, Y. Zhang, J. HUANG, Mechanism of Novel K2SO4/KCl Composite Roasting Additive for Strengthening Vanadium Extraction from Vanadium–Titanium Magnetite Concentrate, Minerals, 2018, 8, 426.

- G. S. Ryu, Y. B. Lee, K. T. Koh, Y. S. Chung, The mechanical properties of fly ash-based geopolymer concrete with alkaline activators, Constr Build Mater, 2013, 47, 409–418.

- A. Esparham, A. B. Moradikhou, A Novel Type of Alkaline Activator for Geopolymer Concrete Based on Class C Fly Ash, , 2021, 3, 1–13.

- A. Cardoza, H. A. Colorado, Alkali-activated cement manufactured by the alkaline activation of demolition and construction waste using brick and concrete wastes, Open Ceram, 2023, 16, 100438.

- M. El Alouani, S. Alehyen, M. EL Achouri, A. Hajjaji, C. Ennawaoui, M. Taibi, Influence of the Nature and Rate of Alkaline Activator on the Physicochemical Properties of Fly Ash-Based Geopolymers, Adv Civ Eng, 2020, 2020, e8880906.

- M. N. S. Hadi, H. Zhang, S. Parkinson, Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability, J Build Eng, 2019, 23, 301–313.

- Y. Feng, Q. Zhang, Q. Chen, D. Wang, H. Guo, L. Liu, Q. Yang, Hydration and strength development in blended cement with ultrafine granulated copper slag, PLoS One, 2019, 14, e0215677.

- H. U. Ahmed, A. A. Mohammed, S. Rafiq, A. S. Mohammed, A. Mosavi, N. H. Sor, S. M. A. Qaidi, Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review, Sustainability, 2021, 13, 13502.

- B. S. Umniati, P. Risdanareni, F. T. Z. Zein, Workability enhancement of geopolymer concrete through the use of retarder, AIP Conf Proc, 2017, 1887, 20033.

- J. Junior, A. K. Saha, P. K. Sarker, A. Pramanik, Workability and Flexural Properties of Fibre-Reinforced Geopolymer Using Different Mono and Hybrid Fibres, Materials (Basel), 2021, 14, 4447.

- A. Mehta, R. Siddique, Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash, Constr Build Mater, 2017, 150, 792–807.

- A. Hassan, Experimental Study of Fly Ash Based Geopolymer Concrete, Int J Adv Earth Sci Eng, 2018, 7 doi:10.23953/cloud.ijaese.344.

- J. Davidovits, False Values on CO2 Emission for Geopolymer Cement/Concrete published in Scientific Papers, , 2015.

- N. K. A. Agustini, I. N. Sinarta, P. S. Ningsih, K. Y. P. Suwandi, Silica sand as a fine aggregate on the workability and compressive strength of fly ash geopolymer mortar, AIP Conf Proc, 2024, 3110, 20011.

- A. Saeed, H. M. Najm, A. Hassan, M. M. S. Sabri, S. Qaidi, N. S. Mashaan, K. Ansari, Properties and Applications of Geopolymer Composites: A Review Study of Mechanical and Microstructural Properties, Materials (Basel), 2022, 15, 8250.

- S. Aldawsari, R. Kampmann, J. Harnisch, C. Rohde, Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review, Materials (Basel), 2022, 15, 876.

- J. G. Jang, N. K. Lee, H. K. Lee, Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers, Constr Build Mater, 2014, 50, 169–176.

- S. Kumar, R. Kumar, S. P. Mehrotra, Influence of Granulated Blast Furnace Slag on the Reaction, Structure and Properties of fly ash Based Geopolymer, J Mater Sci, 2010, 45, 607–615.

- A. Ginting, Increasing the Compressive Strength of Concrete Using PPC, J Phys Conf Ser, 2022, 2394, 12021.

- H. T. Namle, L. H. Poh, S. Wang, M.-H. Zhang, Critical parameters for the compressive strength of high-strength concrete, Cem Concr Compos, 2017, 82, 202–216.

- S. Demie, M. F. Nuruddin, N. Shafiq, Effects of micro-structure characteristics of interfacial transition zone on the compressive strength of self-compacting geopolymer concrete, Constr Build Mater, 2013, 41, 91–98.

- A. Erfanimanesh, M. K. Sharbatdar, Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate, J Build Eng, 2020, 32, 101781.

- M. Cyr, I. Rachida, T. Poinot, Properties of inorganic polymer (geopolymer) mortars made of glass cullet, J Mater Sci, 2012, 47, 2782–2797.

- A. Rashad, Properties of alkali-activated fly ash concrete blended with slag, Iran J Mater Sci Eng, 2013, 10, 57–64.

- R. A. Rahim Ghadban, M. A. Abdulrehman, Study of some properties of colored geopolymer concrete consisting of slag, J Mech Behav Mater, 2022, 31, 656–662.

- F. U. A. Shaikh, Review of mechanical properties of short fibre reinforced geopolymer composites, Constr Build Mater, 2013, 43, 37–49.

- K. J. Shaise, Y. Nadir, K. Girija, Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review, Constr Build Mater, 2021, 280, 122443.

- Q. Zhang, D. Huang, X. Zhang, L. Lin, Z. Wang, W. Tang, X. Qiang, Improving the properties of metakaolin/fly ash composite geopolymers with ultrafine fly ash ground by steam-jet mill, Constr Build Mater, 2023, 387, 131673.

- S. Saravanan, S. Elavenil, Strength properties of geopolymer concrete using msand by assessing their mechanical characteristics, J Eng Appl Sci, 2018, VOLUME 13, 4028–4041.

- B. Lee, G. Kim, R. Kim, B. Cho, S. Lee, C.-M. Chon, Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash, Constr Build Mater, 2017, 151, 512–519.

- L. S. Wong, Durability Performance of Geopolymer Concrete: A Review, Polymers (Basel), 2022, 14, 868.

- T. S. Alahmari, T. A. Abdalla, M. A. M. Rihan, Review of Recent Developments Regarding the Durability Performance of Eco-Friendly Geopolymer Concrete, Buildings, 2023, 13, 3033.

- M. Mansourghanaei, M. Biklaryan, A. Mardookhpour, Experimental study of the effects of adding silica nanoparticles on the durability of geopolymer concrete, Aust J Civ Eng, 2022, 22, 81–93.

- N. Gupta, A. Gupta, K. K. Saxena, A. Shukla, S. K. Goyal, Mechanical and durability properties of geopolymer concrete composite at varying superplasticizer dosage, Mater Today Proc, 2021, 44, 12–16.

- S. Nagajothi, S. Elavenil, S. Angalaeswari, L. Natrayan, W. D. Mammo, Durability Studies on Fly Ash Based Geopolymer Concrete Incorporated with Slag and Alkali Solutions, Adv Civ Eng, 2022, 2022, e7196446.

- M. S. T. Masoule, N. Bahrami, M. Karimzadeh, B. Mohasanati, P. Shoaei, F. Ameri, T. Ozbakkaloglu, Lightweight geopolymer concrete: A critical review on the feasibility, mixture design, durability properties, and microstructure, Ceram Int, 2022, 48, 10347–10371.

- A. Çevik, R. Alzeebaree, G. Humur, A. Niş, M. E. Gülşan, Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete, Ceram Int, 2018, 44, 12253–12264.

- R. Kumar, M. Verma, N. Dev, Investigation on the Effect of Seawater Condition, Sulphate Attack, Acid Attack, Freeze–Thaw Condition, and Wetting–Drying on the Geopolymer Concrete, Iran J Sci Technol Trans Civ Eng, 2022, 46, 2823–2853.

- R. R. Bellum, K. Muniraj, S. R. C. Madduru, Exploration of mechanical and durability characteristics of fly ash-GGBFS based green geopolymer concrete, SN Appl Sci, 2020, 2, 919.

- A. Wongsa, V. Sata, P. Nuaklong, P. Chindaprasirt, Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete, Constr Build Mater, 2018, 188, 1025–1034.

- S. Luhar, S. Chaudhary, I. Luhar, Thermal resistance of fly ash based rubberized geopolymer concrete, J Build Eng, 2018, 19, 420–428.

- A. L. Almutairi, B. A. Tayeh, A. Adesina, H. F. Isleem, A. M. Zeyad, Potential applications of geopolymer concrete in construction: A review, Case Stud Constr Mater, 2021, 15, e00733.

- S. Subramanian, R. Davis, B. S. Thomas, Full-scale static behaviour of prestressed geopolymer concrete sleepers reinforced with steel fibres, Constr Build Mater, 2024, 412, 134693.

- B. Deivabalan, B. Tamilamuthan, Development of Geopolymer Concrete on Railway Pre-Stressed Concrete Sleeper under Static Loading, , 2015https://papers.ssrn.com/abstract=2796683 (accessed 28 Mar2024).

- T. Srividya, K. R. P.r., S. M., S. A., J. R., A state-of-the-art on development of geopolymer concrete and its field applications, Case Stud Constr Mater, 2022, 16, e00812.

- D. S. I. Khan, Mechanical performance of geopolymer pre-stressed railway sleepers, Mater Today Proc, 2021, 47, 414–423.

- N. Dave, V. Sahu, A. K. Misra, Development of geopolymer cement concrete for highway infrastructure applications, J Eng Des Technol, 2020, 18, 1321–1333.

- P. Gorde, O. Thongire, G. Kadam, S. Shekh, V. Sonawane, D. Kulkarni, Review of geopolymer concrete in high grade infrastructure construction, Mater Today Proc, 2023 doi:10.1016/j.matpr.2023.05.431.

- K.-H. Yang, J.-K. Song, A. F. Ashour, E.-T. Lee, Properties of cementless mortars activated by sodium silicate, Constr Build Mater, 2008, 22, 1981–1989.

- M. A.-T. Mustafa, I. Hanafi, R. Mahmoud, B. A. Tayeh, Effect of partial replacement of sand by plastic waste on impact resistance of concrete: experiment and simulation, Structures, 2019, 20, 519–526.

- R. Vera, M. Villarroel, A. M. Carvajal, E. Vera, C. Ortiz, Corrosion products of reinforcement in concrete in marine and industrial environments, Mater Chem Phys, 2009, 114, 467–474.

- Z. Zhang, X. Yao, H. Zhu, Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties, Appl Clay Sci, 2010, 49, 1–6.

- X. H. Zhu, X. J. Kang, K. Yang, C. H. Yang, Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement, Constr Build Mater, 2017, 132, 290–295.

Downloads

Published

05-04-2025

Issue

Section

Materials Chemistry
Loading...