Dealuminated and Desilicated Natural Zeolite as a Catalyst for Hydrocracking of Used Cooking Oil into Biogasoline
DOI:
https://doi.org/10.13171/mjc02101141493kwAbstract
The modification of natural zeolite has been conducted by dealumination and desilication using HCl and NaOH treatments as a catalyst for hydrocracking of used cooking oil into biogasoline. This research aimed to study the effect of dealumination and desilication on the natural zeolite activity and selectivity of a hydrocracking process. A variety of catalysts was prepared by applying 3, 6, and 9 M HCl in the dealumination of natural zeolite to produce DNZ(3-1), DNZ(3-2) DNZ(3-3), DNZ(6-1), DNZ(6-2), DNZ(6-3), DNZ(9-1), DNZ(9-2), and DNZ(9-3) catalysts and NaOH in the desilication of natural zeolite to obtain NZB catalyst. The results showed that the dealumination and the desilication treatments affected the liquid product conversion of used cooking oil from catalytic hydrocracking. The hydrocracking of used cooking oil with NZB catalyst produced the highest gasoline fuel conversion of 94.87%.
References
- S. Bezergianni, S. Voutetakis, A. Kalogianni, Catalytic hydrocracking of fresh and used cooking oil, Ind. Eng. Chem. Res., 2009, 48, 8402-8406.
- Z. Zhang, Q. Wang, H. Chen, X. Zhang, Hydroconversion of waste cooking oil into green biofuel over hierarchical USY-supported NiMo catalyst: a comparative study of desilication and dealumination, Catalysts, 2017, 7, 281.
- M. Utami, K. Wijaya, W. Trisunaryanti, Pt-promoted sulfated zirconia as a catalyst for hydrocracking of LDPE plastic waste into liquid fuels, Mater. Chem. Phys., 2018, 213, 548-555.
- G. A. Nasser, T. Kurniawan, T. Tago, I. A. Bakare, T. Taniguchi, Y. Nakasaka, T. Masuda, O. Muraza, Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals, J. Taiwan Inst. Chem. Eng., 2016, 61, 20-25.
- S. Kadarwati, F. Rahmawati, P. E. Rahayu, K. I. Supardi, Kinetics and mechanism of Ni/Zeolite-catalyzed hydrocracking of palm oil into Biofuel, Indones, J. Chem., 2017, 13, 77-85.
- L. E. Burris, M. C. G. Juenger, the effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials, Cem. Concr. Res., 2015, 79, 185-193.
- M. Silva, A. Lecus, Y. Lin, J. Corrao, tailoring natural zeolites by acid treatments, J. Mater. Sci. Chem. Eng., 2009, 7, 26-37.
- D. D. Anggoro, H. Oktavianty, S. B. Sasongko, L. Buchori, Effect of dealumination on the acidity of zeolite Y and the yield of glycerol monostearate (GMS), Chemosphere, 2020, 257, 127012.
- X. Chen, W. V. Srubar, Sulfuric acid improves the reactivity of zeolites via dealumination, Constr. Build Maters., 2020, 264, 120648.
- D. V. Peron, V. L. Zholobenko, J. H. S. Melo, M. Capron, N. Nuns, M. O. Souza, L. A. Feris, N. R. Marcilio, V. V. Ordomsky, A. Y. Khodakov, External surface phenomena in dealumination and desilication of a large single crystal of ZSM-5 zeolite synthesized from a sustainable source, Microporous and Mesoporous Mater., 2019, 286, 57-64.
- Y. Wu, F. Tian, J. Liu, D. Song, C. Jia, Y. Chen, Enhanced catalytic isomerization of α-pinene over mesoporous zeolite beta of low Si/Al ratio by NaOH treatment, Microporous Mesoporous Mater., 2017, 162, 168-174.
- J. C. Groen, T. Sano, J. A. Moulijn, J. Pérez-Ramírez, Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions, J. Catal., 2007, 251, 21-27.
- M. H. M. Ahmed, O. Muraza, M. Yoshioka, T. Yokoi, Effect of multi-step desilication and dealumination treatments on the performance of hierarchical EU-1 zeolite for converting methanol to olefins, Microporous Mesoporous Mater., 2017, 241, 79-88.
- K. Góra-Marek, K. Tarach, J. Tekla, Z. Olejniczak, P. Kus̈trowski, L. Liu, J. Martinez-Triguero, F. Rey, Hierarchical mordenite dedicated to the fluid catalytic cracking process: Catalytic performance regarding textural and acidic properties, J. Phys. Chem. C., 2014, 118, 28043–28054.
- S. Ardizzone, C. L. Bianchi, G. Cappelletti, F. Porta, Liquid-Phase catalytic activity of sulfated zirconia from sol-gel precursors: The role of the surface feature, J. Catal., 2004, 227, 470-478.
- J. V. Milato, R. J. Franca, A. S. Rocha, M. R. C. M. Calderari, Catalytic co-pyrolysis of oil sludge with HDPE to obtain paraffinic products over HUSY zeolites prepared by dealumination and desilication, J. Anal. Appl. Pyrolysis., 2020, 151, 104928.
- M. S. Ore, K. Wijaya, W. Trisunaryanti, W. D. Saputri, E. Heraldy, M. W. Yuwana, P. L. Hariani, A. Budiman, S. Sudiono, The synthesis of SO4/ZrO2 and Zr/CaO catalysts via hydrothermal treatment and their application for conversion of low-grade coconut oil into biodiesel, J. Environ. Chem. Eng., 2020, 8, 104205.
- P. P. Dik, G. G. Danilova, M. O. Kazakov, K. A. Nadiena, V. Budukva, P. Yu, O. V. Klimov, P. P. Prosvirin, E. Y. Gerasimov, T. O. Bok, E. E. Dobryakova, E. E. Knyazeva, I. I. Ivanova, A. S. Noskov, Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties, Fuel, 2019, 237.
- N. Viswanadham, M. Kumar, Effect of dealumination severity on the pore size distribution of mordenite, Microporous Mesoporous Mater., 2006, 92, 31-37.
- Z. Qin, W. Shen, S. Zhou, Y. Shen, C. Li, P. Zeng, B. Shen, Defect-assisted mesopore formation during Y zeolite dealumination: The types of defect matter, Microporous and Mesoporous Mater., 2020, 303, 110248.
- C. T. Tye, Catalysts for hydroprocessing of heavy oils and petroleum residues, Intechopen, 2019. doi: 10.5772/intechopen.89451.
- W. Sriningsih, M. G. Saerodji, W. Trisunaryanti, Triyono, R. Armunanto, I. I. Falah, Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co and Co-Mo metals, Procedia Environ. Sci., 2014, 20, 215-224.
- Q. Cui, S. Wang, Q. Wei, L. Mu, G. Yu, T. Zhang, Y. Zhou, Synthesis and characterization of Zr incorporated small crystal size Y zeolite supported NiW catalysts for hydrocracking of vacuum gas oil, Fuel, 2019, 237, 597-605.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).