Cover Image

Design, synthesis, and characterization of hole transport materials for perovskite solar cells

Benjamin Brandes, Björn A. Weber, René Csuk


Perovskite solar cells (PSC) are one of the most promising emerging photovoltaic technologies for a sustainable and profitable energy economy. However, finding alternative, stable, and cheap hole transport materials (HTM) required for these devices is one of the bottlenecks alongside finding optimal manufacturing processes to increase the market viability further. Here we show the synthesis and characterization of six small conjugated molecules HTMs and discuss their viability for future applications. For further validation, DFT calculations were carried out to underline the usability of the HTMs. In the future, these HTMs might help build cheaper and more efficient PSCs. Additionally, this work offers an insight on how to evaluate HTMs without needing to assemble a PSC. Finally, this work might help boost research efforts also for research groups with limited instrument availability.

Full Text:



- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 2009, 131, 6050-6051.

- (last accessed 2022, March 28th).

- M. Kim, J. Jeong, H.Z. Lu, T.K. Lee, F.T. Eickemeyer, Y.H. Liu, I.W. Choi, S.J. Choi, Y. Jo, H.B. Kim, S.I. Mo, Y. K. Kim, H. Lee, N.G. An, S. Cho, W.R. Tress, S.M. Zakeeruddin, A. Hagfeldt, J.Y. Kim, M. Gratzel, D.S. Kim, Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells, Science, 2022, 375, 302-306.

- P. Mahajan, R. Datt, W.C. Tsoi, V. Gupta, A. Tomar, S. Arya, Recent progress, fabrication challenges and stability issues of lead-free tin-based perovskite thin films in the field of photovoltaics, Coord. Chem. Rev., 2021, 429, 213633.

- R. Kour, S. Arya, S. Verma, J. Gupta, P. Bandhoria, R. Datt, V. Gupta, Potential substitutes for replacement of lead in perovskite solar cells: a review, Glob. Chall., 2019, 3, 1900059.

- X.X. Yin, Z.N. Song, Z. F. Li, W.H. Tang, Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells, Energy. Environ. Sci., 2020, 13, 4057-4086.

- A. Urbina, The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review, J. Phys. Energy, 2020, 2, 022001.

- D.Y. Li, D.Y. Zhang, K.S. Lim, Y. Hu, Y.G. Rong, A.Y. Mei, N.G. Park, H.W. Han, A Review on Scaling Up Perovskite Solar Cells, Adv. Funct. Mater, 2021, 31.

-, (last accessed: 2022, March 28th).

- P. Mahajan, B. Padha, V. Gupta, R. Datt. W.C. Tsoi, S. Datapathi, S. Arya, Review of current progress in hole-transportin materials for perovskite solar cells, J. Energ. Chem., 2022, 68, 333-386.

- F.M. Rombach, S.A. Haque, T.J. Macdonald, Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells, Energy. Environ. Sci., 2021, 14, 5161-5190.

- T.P. Osedach, T.L. Andrew, V. Bulovic, Effect of synthetic accessibility on the commercial viability of organic photovoltaics, Energy. Environ. Sci., 2013, 6, 711-718.

- C. Lambert, G. Noll, One- and two-dimensional electron transfer processes in triarylamines with multiple redox centers, Angew. Chem. Int. Edit., 1998, 37, 2107-2110.

- Y. Liu, C. Tao, G.H. Xie, J. Van der Velden, S. Marras, Z.H. Luo, X. Zeng, A. Petrozza, C.L. Yang, Hexa-substituted benzene derivatives as hole-transporting materials for efficient perovskite solar cells, Dyes Pigments, 2019, 163, 267-273.

- H.D. Zhao, C. Tanjutco, S. Thayumanavan, Design and synthesis of stable triarylamines for hole-transport applications, Tetrahedron Lett., 2001, 42, 4421-4424.

- C.I. Schilling, O. Plietzsch, M. Nieger, T. Muller, S. Brase, Fourfold Suzuki-Miyaura and Sonogashira Cross-Coupling Reactions on Tetrahedral Methane and Adamantane Derivatives, Eur. J. Org. Chem., 2011,


- Q. D. Ou, C. Li, Q. K. Wang, Y.Q. Li, J.X. Tang, Recent Advances in Energetics of Metal Halide Perovskite Interfaces, Adv. Mater. Interfaces, 2017, 4.

- P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen, A. Kahn, Interface energetics in organo-metal halide perovskite-based photovoltaic cells, Energy. Environ. Sci., 2014, 7, 1377-1381.

- S.H. Wang, T. Sakurai, W.J. Wen, Y.B. Qi, Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells, Adv. Mater. Interfaces, 2018, 5.

- Y. Zhang, C. Kou, J.J. Zhang, Y.H. Liu, W.H. Li, Z.S. Bo, M. Shao, Crosslinked and dopant free hole transport materials for efficient and stable planar perovskite solar cells, J. Mater. Chem. A, 2019, 7, 5522-5529.

- W.J. Chi, Z.S. Li, The theoretical investigation on the 4-(4-phenyl-4-alpha-naphthylbutadieny)-triphenylamine derivatives as hole-transporting materials for perovskite-type solar cells, Phys. Chem. Chem. Phys., 2015, 17, 5991-5998.

- D.R.T. Zahn, G.N. Gavrila, M. Gorgoi, The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission, Chem. Phys., 2006, 325, 99-112.

- J. Sworakowski, How accurate are energies of HOMO and LUMO levels in small-molecule organic semiconductors determined from cyclic voltammetry or optical spectroscopy? Synthetic Met., 2018, 235, 125-130.

- J.C.S. Costa, R.J.S. Taveira, C.F.R.A.C. Lima, A. Mendes, L.M.N.B.F. Santos, Optical band gaps of organic semiconductor materials, Opt. Mater., 2016, 58, 51-60.

- N.G. Tsierkezos, Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K,

J. Solution Chem., 2007, 36, 289-302.

- N.G. Connelly, W.E. Geiger, Chemical redox agents for organometallic chemistry, Chem. Rev., 1996, 96, 877-910.

- E.M. Espinoza, J.A. Clark, J. Soliman, J.B. Derr, M. Morales, V.I. Vullev, Practical Aspects of Cyclic Voltammetry: How to Estimate Reduction Potentials When Irreversibility Prevails, J. Electrochem. Soc., 2019, 166, H3175-H3187.

- V.V. Pavlishchuk, A.W. Addison, Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 degrees C, Inorg. Chim. Acta, 2000, 298, 97-102.

- A.M. Bond, K.B. Oldham, G.A. Snook, Use of the ferrocene oxidation process to provide both reference electrode potential calibration and a simple measurement (via semiintegration) of the uncompensated resistance in cyclic voltammetric studies in high resistance organic solvents, Anal. Chem., 2000, 72, 3492-3496.

- C.G. Zoski, Handbook of Electrochemistry, 1st ed., Elsevier, Amsterdam, Boston, 2007.

- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao,

N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16 Rev. C 01, 2016.

- S. Lei, A.V. Heyen, S. De Feyter, M. Surin, R. Lazzaroni, S. Rosenfeldt, M. Ballauff, P. Lindner, D. Mossinger, S. Hoger, Two-Dimensional Oligo(phenylene-ethynylene-butadiynylene)s: All-Covalent Nanoscale Spoked Wheels, Chem-Eur. J., 2009, 15, 2518-2535.

- M.J. Kim, S. Ahn, J. Yi, J.T. Hupp, J.M. Notestein, O.K. Farha, S.J. Lee, Ni(II) complex on a bispyridine-based porous organic polymer as a heterogeneous catalyst for ethylene oligomerization, Catal. Sci. Technol., 2017, 7, 4351-4354.

- M.C.C. Ng, J.B. Harper, A.P.J. Stampfl, G.J. Kearley, S. Rols, J.A. Stride, Central-Atom Size Effects on the Methyl Torsions of Group XIV Tetratolyls, Chem-Eur. J., 2012, 18,


- T.M. Figueira-Duarte, S.C. Simon, M. Wagner, S.I. Drtezhinin, K.A. Zachariasse, K. Müllen, Polypyrene Dendrimers, Angew. Chem. Int. Edit., 2008, 47, 10175-10178.

- M.A. Zwijnenburg, G. Cheng, T.O. McDonald, K.E. Jelfs, J.X. Jiang, S.J. Ren, T. Hasell, F. Blanc, A.I. Cooper, D.J. Adams, Shedding Light on Structure-Property Relationships for Conjugated Microporous Polymers: The Importance of Rings and Strain, Macromolecules, 2013, 46, 7696-7704.

- E. Ibuki, S. Ozasa, K. Murai, Studies of Polyphenyls and Polyphenylenes .1. Syntheses and Infrared and Electronic-Spectra of Several Sexiphenyls, Bull. Chem. Soc. Jpn., 1975, 48, 1868-1874.

- C. Poriel, J.J. Liang, J. Rault-Berthelot, F. Barriere, N. Cocherel, A.M.Z. Slawin, D. Horhant, M. Virboul, G. Alcaraz, N. Audebrand, L. Vignau, N. Huby, G. Wantz, L. Hirsch, Dispirofluorene-indenofluorene derivatives as new building blocks for blue organic electroluminescent devices and electroactive polymers, Chem-Eur. J., 2007, 13, 10055-10069.

- W.F. Jiang, H.L. Wang, A.G. Wang, Z.Q. Li, Simple and efficient method for obtaining fluorene and spirobifluorene bromide derivatives, Synthetic Commun., 2008, 38, 1888-1895.

- H.H. Lu, Y.S. Ma, N. J. Yang, G.H. Lin, Y.C. Wu, S.A. Chen, Creating a Pseudometallic State of K+ by Intercalation into 18-Crown-6 Grafted on Polyfluorene as Electron Injection Layer for High-Performance PLEDs with Oxygen- and Moisture-Stable Al Cathode, J. Am. Chem. Soc., 2011, 133, 9634-9637.



  • There are currently no refbacks.

Copyright (c) 2022 Mediterranean Journal of Chemistry