Cover Image

Hg-Pb binary heavy metals interaction study with Humic Acid: monitoring by FTIR spectroscopy

Mohamed Cherif Terkhi, Mouffok Redouane Ghezzar, Ahmed Addou


This work shows that infrared spectroscopy is an easy and fast analytical technique for monitoring the behavior of the humic acids Fluka and Leonardite in contact with binary solutions of mercury and lead. Given the complexity of the structure of humic acid, the experiments were carried out on simple model molecules.

The spectra showed a shift (30 cm-1) of the antisymmetric stretching vibration band from the carboxylate function -COO- from 1590 to 1560 cm-1 for the humic acids Fluka-binary solution interaction. In the case of mercury alone, the shift was of 40 cm-1, it can be seen that this shift has dropped by 10cm-1, which proves that the cationic exchange becomes more difficult.

We have confirmed that the affinity is due to the ionic radius, the reduction potential and the ionic potential. We reinforced this by a fourth parameter which is the frequency separations between the-COO- antisymmetric and symmetric stretches (Dnas-s). We have found thatDnas-s is strongly related to the type of fixed metal. The spectra also showed the variation of the intensity of the C=O elongation vibration band of the carboxylic function -COOH up to 1610 cm-1 for the Leonardite humic acid-binary interaction. The high concentration of the binary solution did not result in the total disappearance of the C=O band as in the Leonardite humic acid-mercury alone interaction study. This proves that some carboxylic sites are not accessible to Hg2+ ions.

Full Text:



- H. Bradl, Heavy Metals in the Environment: Origin, Interaction and Remediation, Academic Press: London, 2002, 6.

- F. G. Figueredo, L. F. Lima, M. F. B. Morais-Braga, J. G. Figueredo, N. B. Pinto, E. F. F. Matias, I. R. A. Menezes, R. S. Almeida, F. A. B. Cunha, H. D. M. Coutinho, Potential assessment cytoprotective against toxic effect of chloride of mercury and antioxidant Lygodium venustum sw (lygodiaceae), Rev. Interfaces, 2016, 39, 44-49.

- J. O. Nriagu, J. M. Pacyna, Quantitative assessment of worldwide contamination of air, water and soil by traces elements, Nature, 1988, 333, 134-9.

- S. D. Cunningham, W. R. Berti, J. W. Huang, Phyto-remediation of contaminated soils, Trends in Biotechnology, 1995, 13, 393-397.

- M. Halim, P. Conte, A. Piccolo, Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances, Chemosphere, 2003, 52, 265-275.

- J. C. L'Hopitault, J. Pommery, The complexing power of different fractions of humic matter with regard to pesticides and metals, Water Science, 1982, 1, 85-92.

- D. G. Kinniburgh, C. H. J. Milne, M. F. Benedetti, J. P. Pinheiro, J. Filius, L. K. Koopal, W. H. Van Riemsdijk, Metal ion binding by humic acid: application of the NICA-Donnan model, Environ. Sci.Technol., 1996, 30, 1687-1698.

- D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency, Colloid.Surface A, 1999, 151, 147-166.

- G. Ogner, M. Schnitzer, Chemistry of Fulvic Acid, a Soil Humic Fraction, and its Relation to Lignin, Can. J. Chem., 1971, 49, 1053-1063.

- H. Baker, F. Khalili, Analysis of the removal of lead(II) from aqueous solutions by adsorption onto insolubilized humic acid: temperature and pH dependence, Anal. Chim. Acta., 2004, 516, 179-186.

- C. Steelink, Implications of elemental characteristics of humic substances, In G. Aiken,D. McKnight, R. Wershaw and P. MacCarthy, (eds.), Humic Substances in Soil, Sediment and Water. Wiley Interscience, New York, 1985.

- W. Shixiang, L. Yong, F. Qin, Z. Anlan, F. Lu, M. Yulan, Removal of Hg(II) from aqueous solution using sodium humate as heavy metal capturing agent, Water Sci.Technol., 2016, 74, 2946–2957.

- T. Xue, R. Q. Wang, M. M. Zhang, J. L. Dai, Adsorption and Desorption of Mercury(II) in Three Forest Soils in Shandong Province, China, Pedosphere, 2013, 23, 265-272.

- Q. Yongbo, Z. Jun, F. Qingling, H. Hongqing, H. Qiaoyun, Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals, J. Environ. Manage., 2017, 200, 304-311.

- D. L. Sparks, Environmental soil chemistry, Academic Press, New York, 1995.

- M. C. Terkhi, F. Taleb, P. Gossart, A. Semmoud, A. Addou, Fourier transform infrared study of mercury interaction with carboxyl groups in humic acids, J. Photoch. Photobio.A., 2008, 198, 205-214.

- I. V. Perminova, L. A. Karpiouka, S. A. Ponomarenko, K. Hatfield, A. I. Konstantinov, N. Hertkorn, A. M. Muzafarov, Controlling aqueous sorption of humic substances on silica gel by directed alkoxysilyl-derivatization of their functionalities, Colloid Surface A., 2012, 396,


- A. G. S. Prado, B. S. Miranda, J. A. Dias, Attachment of two distinct humic acids onto a silica gel surface, Colloid Surface A., 2014, 242, 137-143.

- Y. J. Yin, H. E. Allen, C. P. Huang, P. F. Sanders, Interaction of Hg(II) with soil-derived humic substances, Anal. Chim. Acta., 1997, 341, 73-82.

- P. Zhou, H. Yan, B. Gu, Competitive complexation of metal ions with humic substances, Chemosphere, 2005, 58, 1327-1337.

- J. Gao, K. C. Lam, R. W. Dawson, W. X. Liu, S. Tao, The effect of pH, ion strength and reactant content on the complexation of Cu2+ by various natural organic ligands from water and soil in Hong Kong, Chemosphere, 2004, 54, 507-514.

- D. J. Walker, R. Clemente, M. P. Bernal, Contrasting effects of manure and compost on soil pH, heavy metals availability and growth of Chenopodium album L. in a soil contaminated by pyretic mine waste, Chemosphere., 2004, 57, 215-224.

- J. J. Msaky, R. Calvet, Adsorption behavior of copper and zinc in soils, influence of pH on adsorption characteristics, Soil Sci., 1990, 150,


- H. B. Bradl, Adsorption of heavy metal ions on soils and soils constituents, J.Colloid. Interf.Sci., 2004, 277, 1-18.

- E. A. Ghabbour, G. Davies, N. K. Ghali, M. D. Mulligan, The effect of temperature on tight metal binding by peat and soil-derived solid humic acids, Can. J. Soil Sci., 2001, 81, 331-336.

- D. G. Strawn, D. L. Sparks, Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil, Soil Sci. Soc. Am. J., 2000, 64, 145-156.

- G. Sposito, The Chemistry of Soils, Oxford Univ. Press, New York, 1989.

- D. L. Sparks, Environmental Soil Chemistry, 2nd ed. Academic Press: San Diego, 2003.

- X. Jin, G. W. Bailey, Y. S. Yu, A. T. Lynch, Kinetics of single and multiple metal ion sorption processes on humic substances, Soil Sci., 1996, 161, 509-520.

- A. Liu, R. D.Gonzalez, Modeling Adsorption of Copper(II), Cadmium (II) and Lead(II) on Purified Humic Acid, Langmuir, 2000, 16,


- J. C. Echeverria, M. T. Morera, C. Mazkiarin,

J. J. Garrido, Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments, Environ Pollut., 1998, 101,


- E. F. Covelo, M. L. Andrade, F. A. Vega, Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics, J. colloid.Interf.Sci., 2004, 280, 1-8.

- C. Plaza, G. Brunetti, N. Senesi, A. Polo, Molecular and Quantitative Analysis of Metal Ion Binding to Humic Acids from SewageSludge and Sludge-Amended Soils by Fluorescence Spectroscopy, Environ. Sci. Technol., 2006, 40, 917-923.

- P. Janos, J. Sypecka, P. Mlckovska, P. Kuran, V. Pilarova, Removal of metal ions from aqueous solutions by sorption on to untreated low-rank coal (oxihumolite), Sep.Purif. Technol., 2007, 53, 322-329.

- P. Gossart, A. Semmoud, B. Ouddane, J. P. Huvenne, Study of the interaction between humic acids and lead: exchange between Pb2+ and H+ under various chemical conditions followed by FTIR, Phys. Chem. News., 2003, 9, 101-108.

- M. Klucakova, P. Pelikan, L. Lapcik, B. Lapcikova, J. Kucerik, M. Kalab, Structure and properties of humic and fulvic acids. I. properties and reactivity of humic acids and fulvic acids, J. Polym. Mater., 2000, 17, 337-356.

- U. T. Santoso, S. J. Santosa, D. Siswanta, B. Rusdiarso, S. Shimazu, Characterization of sorbent produced through immobilization of humic acid on Chitosan using glutaraldehyde as a cross-linking agent and Pb(II) ion as active site protector, Indo. J. Chem., 2010, 10, 301-309.

- H. R. Shulten, M. Shnitzer, A state of the art structural concept for humic substances, Natur Wissen schaften, 1993, 80, 29-30.

- R. L. Malcolm, P. Mac Carthy, Limitations in the use of commercial humic acids in water and soil research, Environ. Sci. Technol., 1986, 20,


- M. H. B. Hayes, Humic substances in soil, sediment and water, Wiley, New York, 1985.

- J. D. Brooks, S. Sternhell, Chemistry of brown coals. I.Oxygen-containing functional groups in Victorian brown coals, J. Appl. Sci., 1957, 8, 206-221.

- M. Schnitzer and U.C. Gupta, Determination of acidity in soil organic matter, Soil Sci.Soc. Am. J., 1965, 29, 274-277.

- M. Schnitzer, S. U. Khan, Humic Substances in the Environment, Marcel Dekker, New York, 1972.

- M. Nara, H. Torii, M. Tasumi, Correlation between the vibrational frequencies of the carboxylate group and the types of its coordination to a metal ion: An ab Initio. Molecular Orbital Study, J. Phys. Chem., 1996, 100, 19812-19817.

- K. B. Andersen, M. Langgard, J. Spanget-Larsen, Molecular and vibrational structure of anthralin. Infrared linear dichroism spectroscopy and quantum chemical calculations, J. Mol. Struct., 1999, 475, 131-140.

- L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, 1980.

- Z. Liu, L. Zhou, P. Wei, K. Zeng, C. Wen, H. Lan, Competitive adsorption of heavy metal ions on peat, Mining. Technol., 2008, 18,


- G. O. Bosire, B. V. Kgarebe, J. C. Ngila, Experimental and theoretical characterization of metal complexation with humic acid, Anal. Lett., 2016, 49, 2365-2376.

- D. Bernard, Cahiers Orstom, Pédol., 1976, 14, 287-297.

- P. Mac Carthy, J. A. Rice, Spectroscopic methods (other than RMN) for determining functionality in humic substances. In G. R. Aiken, D. M. McKnight, R. L. Warshaw, J. Mc Carthy (Eds.), Humic Substances in Soils, Sediments and Water, Wiley, New York, 1985, pp, 527-559.

- L. B. Qian, B. L. Chen, Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles, Environ. Sci. Technol., 2013, 47, 8759-8768.

- S. Babel, T. A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 2003, 97,


- Z. Zeledon-Toruno, C. Lao-Luque, M. Solé-Sardans, Nickel and copper removal from aqueous solution by immature coal (leonardite): effect of pH, contact time and water hardness, J. Chem. Tech. Biot., 2005, 80, 649-656.

- C. S. Peter, D. R. Gary, Competitive metal binding to a silicate-immobilized humic material, J. Hazard. Mater., 2007, 145, 203-209.

- G. McKay, J. F. Porter, Equilibrium parameters for the sorption of copper, cadmium, and zinc ions onto peat, J. Chem. Tech. Biot., 1997, 69, 309-320.

- S. J. Allen, P. A. Brown, Isotherm analyses for single component and multi-component metal sorption onto lignite, J. Chem. Technol. Biot., 1995, 62, 17-24.



  • There are currently no refbacks.

Copyright (c) 2020 Mediterranean Journal of Chemistry