Microstructural, structural and piezoelectric properties of nanorod-like ZnO layers deposited by the two-step CBD process
DOI:
https://doi.org/10.13171/mjc02403131749bornandAbstract
ZnO layers were grown on SiO2 substrates by Chemical Bath Deposition (CBD) and characterized in terms of morphological, structural, and local piezoelectric properties. The critical factors that allow the oriented growth of ZnO in nanorod configuration were carefully examined to get close-packed <c>-oriented nanostructures for local piezoelectric measurements. After the first step, which consisted of creating ZnO-seeded layers on SiO2 substrates, the development of ZnO nanorods on these homo-buffer layers was more specifically studied through precursor concentration and growth time parameters. Morphological studies by X-ray diffraction and scanning electron microscopy illustrate that a suitable adjustment of these factors (0.025M equimolar solution, 4h-dip coating) resulted in dense nanostructures with hexagonal wurtzite crystalline state. As-grown films exhibited a strong preferential out-of-plane orientation along the polar c-axis. Atomic force microscopy in contact mode (Electrostatic Force Microscopy or EFM) was used to determine the effective piezoelectric coefficient (d33) of such 1D-textured nanosystems. Values around 9.5 pm/V could be measured.References
- D.K. Sharma, S. Shukla, K.K Sharma, V.A. Kumar, A review on ZnO: Fundamental properties and applications, Mater. Today Proc., 2022, 49, 3028-3035.
- P. Sharma, M.R. Hasan, N.K. Mehto, A. Bishoyi, J. Narang, 92 years of zinc oxide: has been studied by the scientific community since the 1930s – An overview, Sens. Int., 2022, 3, 100182.
- J.B. Lee, H.J. Lee, S.H. Seo, J.S. Park, Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications, Thin Solid Films, 2001, 39, 641-646.
- T. Shibata, K. Unno, E. Makino, Y. Ito, S. Shimada, Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe, Sens. Actuators A Phys., 2002, 102, 106-113.
- E. Dobrocka, P. Novak, D. Buc, L. Harmatha, J. Murín, X-ray diffraction analysis of residual stresses in textured ZnO films, Appl. Surf. Sci., 2017, 395, 16-23.
- Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, Z.L. Wang, Growth of ZnO nanotube arrays and nanotube-based piezoelectric nanogenerators,
J. Mater. Chem., 2009, 19 (48), 9260-9264.
- H. Cicek, T. Karacali, H. Efeoglu, B. Cakmak, Deposition of ZnO thin films by rf & magnetron sputtering on silicon and porous silicon substrates for pyroelectric applications, Semiactuators A Phys., 2017; 260, 24-28.
- Aminullah, A.K. Kasi, B. Najma, J.K. Kasi, S. Rafique, M. Bokhari, Fabrication of Piezoelectric nanogenerator using 3D-ZnO nanosheets and optimization of charge storage system, Mater. Res. Bull., 2019, 110711.
- N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator, Ceram. Int., 2018, 44 (7), 8582-8590.
- R. Sha, A. Basak, P.C. Maity, S. Badhulika, ZnO nanostructured based devices for chemical and optical sensing applications, Sens. Actuators Repo., 2022, 4, 100098.
- V. Consonni, A.M. Lord, Polarity in ZnO nanowires: A critical issue for piezotronic and piezoelectric devices, Nano Energy, 2021, 83, 105789
- L.C. Chao, S.Y. Tsai, C.N. Lin, Vertically aligned ZnO nanowires prepared by thermal oxidation of RF magnetron sputtered metallic zinc oxide, Mat. Sci in Semiconductor Proc., 2013, 16, 1316-1320.
- Z. Li, Y. Tang, N. Liao, P. Yang, Study on interfacial between Si and ZnO, Ceramics Int., 2019, 45, 21894-21899.
- C. Zandalazini, M. Oliva, J.C. Ferrero, Highly c-axis oriented ZnO thin films on glass substrate by pulsed laser deposition: fluence-dependent effects, J. Nanoelectronics and Optoelectronics, 2019, 14, 1461-1467.
- C.H. Kwak, B.H. Kim, S.H. Park, S.Y. Seo, C.I. Park, S. H. Kim, In-situ and ex-situ ZnO-nanorod growth on ZnO homo-buffer layers, J. Cryst. Growth, 2009, 311, 4491-4494.
- C.Y. Zhang, X.M. Li, X. Zhang, W.D. Yu, J.L. Zhao, Seed-layer induced growth of high-quality oriented ZnO films by a sol-gel process, J. Cryst. Growth, 2006, 290, 67-72.
- T. Dedova, M. Krunks, I. Oja Acik, Hierarchical nanostructures of ZnO obtained by spray pyrolysis, Mat. Chem. Phys., 2013, 141, 69-75.
- V. Bornand, A. Mezy, An alternative approach for the oriented growth of ZnO nanostructures, Mater. Lett., 2011, 65, 1363-1366.
- A. Kumar, S.K. Saini, G. Sharma, A.K. Sohar, Development and characterization of ZnO thin films for piezoelectric applications, Materials Today: Proceedings, 2020, 32, 261-263.
- Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, Z.L. Wang, Growth of ZnO nanotube arrays and nanotube-based piezoelectric nanogenerators,
J. Mater. Chem., 2009, 19 (48), 9260-9264.
- A.K. Kasi, B. Najma, J.K. Kasi, S. Rafique, M. Bokhari, Fabrication of Piezoelectric nanogenerator using 3D-ZnO nanosheets and optimization of charge storage system, Mater. Res. Bull., 2019, 110711.
- N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator, Ceram. Int., 2018, 44 (7), 8582-8590.
- J. Pilz, A. Perrotta, G. Leising, ZnO thin film growth by plasma-enhanced atomic layer deposition: materials properties within and outside the atomic layer, Physica Solidi A, 2020, 217 (8), 1900256.
- K.A. Wahid, I.A. Rahim, S.N.A. Safri, A.H. Ariffin, Synthesis of ZnO nanorods at very low temperatures using ultrasonically pre-heated growth solution, Processes, 2023, 11, 708.
- S. Abubakar, S.T. Tan, J.Y.C. Lie, Controlled growth of semiconducting ZnO nanorods for piezoelectric energy harvesting-based nanogenerators, Nanomaterials, 2023, 13, 1025.
- S. Goel, B. Kumar, A review on piezo-ferroelectric properties of morphologically diverse ZnO nanostructures, J. Alloys Comp., 2021, 870, 159512.
- R.K. Pandey, J. Dutta, S. Brahma, C.P. Liu, Review on ZnO-based piezotronics and piezoelectric nanogenerators: Aspects of piezopotential and screening effect, J. Phys. Mater., 2021, 4, 044011.
- I.K. Bdikin, J. Gracio, R. Ayouch, Local piezoelectric properties ZnO thin films prepared by RF-plasma assisted PLD method, Nanotechnology, 2010, 21, 235703.
- W. Qin, T. Li, Y. Li, J. Qiu, X. Ma, W. Zhang, A high power ZnO thin film piezoelectric generator, Appl. Surf. Sci., 2016, 364, 670-675.
- D. D’Agostino, C. Di Giogio, A. Di Trolio, A. Guarino, A.M. Cucolo, A. Vecchione, F. Bobba, Piezoelectricy and charge trapping in ZnO and Co-doped ZnO thin films, AIP Adv, 2017, 055010.
- M. Laurenti, S. Stassi, M. Lorenzoni, Evaluation of the piezoelectric properties and voltage generation of flexible zinc oxide thin films, Nanotechnology, 2015, 26, 215704.
- P.C. Lee, Y.L.H. Siao, J. Dutta, R.C. Wang, S.W. Tseng, C.P. Liu, Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors, Nano-Energy, 2021, 82, 105702.
- B. Garcia-Farrera, L.F. Velasquez-Garcia, Ultrathin ceramic piezoelectric films via room-temperature electrospray of ZnO particles for printed GHz devices, ACS Appl. Mater. Interfaces, 2019, 11, 291676.
- T. Abu Ali, J. Schäffner, P. Kratzer, Piezoelectric properties zinc oxide grown by plasma-enhanced atomic layer deposition, Phys. Status Solidi Appl. Mater. Sci., 2020, 217, 2000319.
- M. Kraüter, T. Abu Ali, B. Stadlober, R. Resel, K. Unger, A.M. Coclite, Tuning the porosity of piezoelectric zinc oxide thin films obtained from molecular layer deposited zircons, Materials, 2022, 15 (19), 6786-6808.
- D.A. Scrymgeour, T.L. Sounart, N.C. Simmons, Polarity and piezoelectric response of solution grown ZnO nanocrystals on silver, J. Appl. Phys, 2007, 101, 014316.
- M. Fortunato, C.R. Chandraiahgari, G. De Bellis, P. Ballirano, P. Soltani, S. Kaciulis, L. Caneve, F. Sarto, M.S. Sarto, Piezoelectric Thin Films of ZnO-Nanorods/Nanowalls Grown by Chemical Bath, IEEE Transactions On Nanotechnology, 2018, 17 (2), 311-319.
- Y. Tong, Y. Liu, L. Dong, Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique, J. Phys. Chem. B, 2006, 110, 20263-20267.
- K.A. Alim, V.A. Fonoberov, M. Shamsa, Micro-Raman investigation of optical phonons in ZnO nanocrystals, J. Appl. Phys., 2005, 97, 1-5.
- A. Khan, J. Pak., Raman Spectroscopic Study of the ZnO Nanostructures, Mater. Soc., 2010, 4, 5-9.
- A. Gruverman, O. Auciello, H. Tokumoto, Scanning force microscopy for the study of domain structure in ferroelectric thin films,
J. Vac. Sci. Technol. B, 1996, 14, 602-605.
- M.H. Zhao, Z.L. Wang, S.X., Mao, Piezoelectric Characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope, Nano letters, 2004, 4, 587-590.
- I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito, Absolute scale of second-order nonlinear-optical coefficients, J. Opt. Am. B, 1997, 14, 2268-2294.
- J.A. Christman, R.R. Woolcott, A.I. Kingon, R.J. Nemanich, Piezoelectric measurements with atomic force microscopy, Appl. Phys. Lett. B, 1998, 73, 3851-3853.
- D.L. Cheng, K.S. Kao, C.H. Liang, C.Y. Wang, Y.C. Chen, W.C. Shih, L.P. Chan, Piezoelectric response evaluation of ZnO thin film prepared by RF magnetron sputtering, MATEC web of conferences, 2017, 109, 04001.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).