Cover Image

The effect of the natural degradation process on the cellulose structure of Moroccan hardwood fiber: a survey on spectroscopy and structural properties

Abdellatif Boukir, Ikram Mehyaoui, Somia Fellak, Laurence Asia, Pierre Doumenq


The aim of this work is to study the effect of natural degradation on the cellulose structure conformation changes of 2 ageing Moroccan hardwoods (400 and 500 years) compared to recent one considered as a reference; and to provide information on the polymorphs content variability from two-phases material (crystalline and amorphous) influenced by a long time of ageing and environmental degradation effects. In order to investigate the effects of both natural degradation conditions and a long time of exposure on cellulose structure conformation (examined samples) with estimating their content (crystalline and amorphous cellulose), three combined techniques XRD, ATR-FTIR and FT-Raman spectroscopy were used. XRD results associated with the crystallographic planes and Miller indices provide information on the presence of a mixture of celluloses polymorphs (crystalline cellulose I, II, Ib and amorphous phase). The decrease in crystallinity-index values from recent to aged ones (38 to 19.5%) confirms well the occurred alteration of crystalline cellulose fibres and their evolution towards a high content of the amorphous form. The prominent regression in the intensities of three FTIR fingerprint cellulose regions evolving towards an overall increase in the intensities of C=O area (1733-1630 cm-1) is a sign on the introduced changes on cellulose conformation and cellulose fibres degradation more accentuated in the case of the very aged sample (500 years). Similar results were confirmed by combining FT-Raman spectroscopy as a vibrational technique. No work has been done on this genus of degraded Moroccan hardwood and the relevance of this study is to investigate the compositional content and structural conformation, to determine the variability in the forms of both crystalline and amorphous cellulose phases with estimating the evolution of their polymorphism, and to monitor the degree of crystalline cellulose fibres deterioration.

Full Text:



- Y. B. Park, K. Kafle, C. M. Lee, D. J. Cosgrove, S. H. Kim, Does cellulose II exist in native alga cell walls? Cellulose structure of Derbesia cell walls studied with SFG, IR and XRD, Cellulose, 2015, 22, 3531-3540.

- P. K. Gupta, V. Uniyal, S. Naithani, Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive, Carbohydr. Polym., 2013, 94, 843-849.

- L. Donaldson, B. Nanayakkara, J. Harrington, Wood Growth and Development; Elsevier, Encyclopedia of Applied Plant Sciences (Second Edition), 2017, 1, pp. 203-210.

- Y. Kataoka and T. Kondo, FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation, Macromolecules, 1998, 31, 760-764.

- H. Kono, S. Yunoki, T. Shikano, M. Fujiwara, T. Erata, M.J. Kawai, CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives. 1. Complete Assignment of the CP/MAS 13C NMR Spectrum of the Native Cellulose, J. Am. Chem. Soc., 2002, 124, 7506-7511.

- P. Bansal, M. Hall, M.J. Realff, J.H. Lee, A.S. Bommarius, Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates, Bioresour. Technol. 2010, 101, 4461-4471.

- S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, D. K. Johnson, Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels, 2010, 3, 1-10.

- S.P.S. Chundawat, G. Bellesia, N. U. ppugundla, L. da Costa Sousa, D. Gao, A. M. Cheh, U. P. Agarwal, C. M. Bianchetti, G. N. Phillips, P. Langan, V. Balan, S. Gnanakaran, B. E. Dale, Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate, J. Am. Chem. Soc., 2011, 133, 11163-11174.

- J. Zhang, Y. Wang, L. Zhang, R. Zhang, G. Liu, G. Cheng, Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD, Bioresour. Technol., 2014, 1 51, 402-405.

- A.L. Barnette, C. Lee, L.C. Bradley, E.P. Schreiner, Y.B. Park, H. Shin, D.J. Cosgrove, S. Park, S.H. Kim, Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods, Carbohyd. Polym. 2012, 89, 802-809.

- Z.H. Jiang, Z. Yang, C. L. So, C. Y. Hse, Rapid prediction of wood crystallinity in Pinus elliotiiplantation wood by near-infrared spectroscopy, J. Wood. Sci., 2007, 53, 449-453.

- K. Labidi, O. Korhonen, M. Zrida, A. H. Hamzaoui, T. Budtova, All-cellulose composites from alfa and wood fibers, Ind. Crops. Prod., 2019, 127, 135-141.

- D. Ciolacu, F. Ciolacu, V. I. Popa, Amorphous cellulose- structure and characterization, Cell. Chem. Technol., 2011, 45, 13-21.

- D. Tamburini, J. J. Åucejko, M. Zborowska, F. Modugno, E. Cantisani, M. Mamonov, M. P. Colombini, The short-term degradation of cellulosic pulp in lake water and peat soil: A multi-analytical study from the micro to the molecular level, Int. Biodeterior. Biodegradation, 2017, 116, 243-259.

- F. Lionetto, R. D. Sole, D. Cannoletta, G. Vasapollo, A. Maffezzoli, Monitoring Wood Degradation during Weathering by cellulose crystallinity, Materials, 2012, 5, 1910-1922.

- U. P. Agarwal, S. A. Ralph, R. S. Reiner, C. Baez, new cellulose crystallinity estimation method that differentiates between organized and crystalline phases, Carbohyd. Polym., 2018, 190, 262-270.

- L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometerâ€. Text. Res. J., 1959, 29, 786-794.

- A. D. French, M. Santiago Cintrón; Cellulose polymorphy, crystallite size, and the segal crystallinity index, Cellulose, 2013, 20, 583-588.

- L. Hajji, A. Boukir, J. Assouik, A. Kerbal, M. Kajjout, P. Doumenq, M. L. De Carvalho, A Multi-analytical Approach for the Evaluation of the Efficiency of the Conservation-Restoration Treatment of Moroccan Historical Manuscripts dating to 16th, 17th and 18th centuries, Appl. Spectrosc., 2015, 69, 920-938.

- S. Nam, A. D. French, B. D. Condon, M. Concha; Segal crystallinity index revisited by the stimulation of X-ray diffraction patterns for cellulose Iβ and cellulose II. Carbohyd. polym., 2016, 135, 1-9.

- I. Carrillo-Varela, M. Pereira, R. T. Mendoça; Determination of polymorphic changes in cellulose from Eucalyptus spp. Fibres after alkalization. Cellulose, 2018, 25, 6831-6845.

- Z. Ling, T. Wang, M. Makarem, M. Santiago Cintrón; S. Nam, J. V. Edwards, S. H. Kim, F. Xu, A. D. French; Effects of ball milling on the structure of cotton cellulose. Cellulose, 2019, 26, 305-328.

- P. Scherrer, Bistimmung der GroBe und der inneren Structur von kolloidteilchen mittels rontgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, 1918, 26, 98-100.

- H.L. Chen, A. Yokochi, X-Ray Diffractometric Study of Microcrystallite Size of Naturally Colored Cotton J. Appl. Polym. Sci., 2000, 76, 1469.

- X. Ju, M. Bowden, E. E. Brown, X. Zhang, An improved X-ray diffraction method for cellulose crystallinity measurement, Carbohyd. Polym., 2015, 123, 476-48.

- M. Danish, R. Hashim, M.N. Mohamad Ibrahim, M. Rafatullah, O. Sulaiman, Surface characterization and comparative adsorption properties of Cr(VI) on pyrolysed adsorbents of Acacia mangium wood and Phoenix dactylifera L. stone carbon. J. Anal. Appl. Pyrol., 2012, 97, 19-28.

- A. Boukir, S. Fellak, P. Doumenq, Structural Characterization of Argania Spinosa Moroccan Wooden Artifacts during natural degradation progress using Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), Heliyon, 2019 (under revision).

- A. D. French; Idealized powder diffraction patterns for cellulose polymorphs. Cellulose, 2014, 21, 885-896.

- E. L. Hult, T. Iversen, J. Sugiyama, Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose, 2003, 10, 103-110.

- J.V. Edwards, K. Fontenot, F. Liebner, N. Doyle nee Pircher, A. D. French, B.D. Condon.; Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose. Int. J. Mol. Sci. 2018; 19, 840.

- R. M. Rowell, R. Pettersen, J. S. Han, J. S. Rowell, M.A., Tshabalala, Cell wall chemistry. In: Rowell, R.M. (Ed.), Handbook of Wood Chemistry and Wood Composites. CRC, Boca Raton, London, New York, Singapore, 2005, pp. 37-76.

- R. Shimura, A. Nishioka, I. Kano, T. Koda, T. Nishio, Novel method for producing amorphous cellulose only by milling, Carbohyd. Polym., 2014, 102, 645-648.

- C. M. Popescu, M. C. Popescu, C. Vasile, Structural changes in biodegraded lime wood, Carbohyd. Polym., 2010, 79, 362-372.

- U. J. Kim, S. Kuga, M. Wada, T. Okano, T. Kondo, Periodate oxidation of crystalline cellulose, Biomacromolecules, 2000, 1, 488-492.

- J. Rojas, V. Kumar, Effect of polymorphic form on the functional properties of cellulose: A comparative study, Carbohyd. Polym., 2012, 87, 2223-2230.

- M. C. I. Mohd Amin, A. G. Abadi, H. Katas, Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles, Carbohyd. Polym., 2014, 99, 180-189.

- B. Zghari, L. Hajji, A. Boukir, Effect of Moist and Dry Heat Weathering Conditions on Cellulose Degradation of Historical Manuscripts exposed to Accelerated Ageing: 13C NMR and FTIR Spectroscopy as a non-Invasive Monitoring Approach. J. Mater. Environ. Sci., 2018, 9, 641-654.

- C. M. Popescu, P. Gradinariu, M. C. Popescu, by white rot fungi through infrared and two-dimensional correlation spectroscopy, J. Mol. Struct., 2016, 1124, 78-84.

- S. Acharya, Y. Hu, H. Moussa, N. Abidi, Preparation and characterization of transparent cellulose films using an improved cellulose dissolution process. J. Appl. Polym. Sci., 2017, 134, 44871.DOI: 10.1002/APP.44871.

- M. Schwanninger, J. C. Rodrigues, H. Pereira, B. Hinterstoisser, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose, Vib. Spectrosc., 2004, 36, 23-40.

- M. Broda, C. M. Popescu, The natural decay of archaeological oak wood versus artificial degradation processes: an FT-IR spectroscopy and X-ray diffraction study, Spectrochim. Acta Part A: Mol. Biomol. Spectro., 2019, 136, 1038-1046.

- Y. Song, J. Zhang, X. Zhang, T. Tan, The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose. Bioresour. Technol., 2015, 193, 164-170.

- N. Abidi, L. Cabrales, C.H. Haigler, Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohyd. Polym., 2014, 100, 9-16.

- L. Hajji, A. Boukir, J. Assouik, S. Pessanha, M. L. De Carvalho, Artificial ageing paper to assess long term effects of conservative treatment. Monitoring by Infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and Energy dispersive X-ray fluorescence (EDXRF), Microchem. J., 2016, 124, 646-656.

- D. Fengel and G. Wegener, Wood, Chemistry, Ultrastructure, Reactions. Waster & Grugter, New York, 1984, pp: 613.

- A. Boukir, M. Guiliano, L. Asia, G. Mille, A fraction to fraction study of photooxidation of BAL 150 crude oil asphaltenes, Analusis, 1998, 26, 358-364.

- S. Fellak, A. Boukir, Moroccan Cedar softwood study: Application of FT-Raman spectroscopy, MATEC Web. Conf., 2018, 191, 00014.

- Y. Essaadaoui, A. Lebkiri, EL H. Rifi, L. Kadiri, A. Ouass, Adsorption of cobalt from aqueous solutions onto Bark of Eucalyptus. Med. J. Chem., 2018, 7, 145-155.

- K. Schenzel, S. Fischer, NIR FT Raman Spectroscopy: A rapid analytical tool for detecting the transformation of cellulose polymorphs, Cellulose, 2001, 8, 49-57.

- K. Kavkler, A. Demsar, Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy, Spectrochim. Acta Part A: Mol. Biomol. Spectro., 2011, 78, 740-746.

- M. Petrou, H.G. M. Edwards, R.C. Janaway, G.B. Thompson, A.S. Wilson, Fourier-transform Raman spectroscopic study of a Neolithic waterlogged wood assemblage, Anal. Bioanal. Chem., 2009, 395, 2131-2138.

- M. Makarem, CM, Lee, K. Kafle, S. Huang, I. Chae, H. Yang, J.D. Kubicki, S.H. Kim, Probing cellulose structures with vibrational spectroscopy, Cellulose, 2019, 26, 35-79.

- U. P. Agarwal, S. A. Ralph, R. S. Reiner, C. Baez, Probing crystallinity of never-dried wood cellulose with Raman spectroscopy, Cellulose, 2016, 23, 125-144.

- N. Gierlinger, S. Luss, C. Konig, J. Konnerth, M. Eder, P. Fratzl, Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging, J. Exp. Bot., 2010, 61, 587-595.

- M. Dudek, G. Zajac, E. Szafraniec, E. Wiercigroch, S. Tott, K. Malek, A. Kaczor, M. Baranska, Raman Optical Activity and Raman spectroscopy of carbohydrates in solution, Spectrochim. Acta Part A: Mol. Biomol. Spectro., 2019, 206, 597-612.



  • There are currently no refbacks.

Copyright (c) 2019 Mediterranean Journal of Chemistry