Cover Image

Transition metal complexes of 1-(1-hydroxypropan-2-ylidene) thiosemicarbazide (H2L): Synthesis, spectroscopic study, and X-ray diffraction structures

Binta Diom, Cheikh Ndoye, Thierno Moussa Seck, Bocar Traore, Ousmane Diouf, Grégory Excoffier, Mohamed Gaye


A series of metal complexes of one Co(II), three Ni(II), one Cu(II), and one Zn(II) with (1-(1-hydroxypropan-2-ylidene) thiosemicarbazide (H2L) have been synthesized and successfully characterized using various spectroscopic methods. A single X-ray diffraction technic determined the complexes' molecular structures. The ligand which acts in tridentate fashion afforded complexes formulated respectively as [Co(H2L)2](NO3)2 (1), [Ni(H2L)2](ClO4)2.2H2O (2), [Ni(H2L)2](NO3)2 (3), [Ni(HL)(H2L)](NO3).0.75(H2O)(4), [Cu(H2L)Cl](Cl).0.5H2O (5), and [Zn(H2L)2](ClO4)2.2H2O (6). These compounds have been studied and characterized by elemental analysis, IR and UV-Vis spectroscopies, molar conductivity, and room-temperature magnetic measurements. The structures of the six complexes have been resolved by X-ray crystallography technique. The asymmetric unit of complex 1 contains two mononuclear cationic units in which the two ligand molecules of each unit act in their neutral forms in a tridentate fashion. In the mononuclear complexes 2, 3, and 6, the asymmetric units contain one cationic unit in which the two ligand molecules act in neutral forms in -h3 modes. In complex 4, the asymmetric unit has one cationic unit in which one ligand molecule acts in a tridentate fashion in its neutral form. In contrast, the second ligand molecule acts tridentate in its mono-deprotonated form. In complex 5, the asymmetric unit contains one complex molecule in which the copper(II) ion is linked to one neutral ligand molecule in -h3 mode and two terminal chloride anions. In complexes (1-4) and (6), the environments around the metal are best described as octahedral geometries. In contrast, the environment around the Cu(II) in complex (5) is best described as a square planar geometry. Hydrogen bonds consolidated the structures of all the complexes.

Full Text:



- O.A. El-Gammal, G.M.A. El-Reash, M.M. El-Gamil, Structural, spectral, pH-metric and biological studies on mercury (II), cadmium (II) and binuclear zinc (II) complexes of NS donor thiosemicarbazide ligand, Spectrochim. Acta, Part A, 2014, 123, 59–70.

- A. Basu, G. Das, Zn(II) and Hg(II) complexes of naphthalene based thiosemicarbazone: Structure and spectroscopic studies, Inorg. Chim. Acta, 2011, 372(1), 394–399.

- B. Wang, Z.-Y. Yang, M. Lü, J. Hai, Q. Wang, Z.-N. Chen, Synthesis, characterization, cytotoxic activity and DNA binding Ni(II) complex with the 6-hydroxy chromone-3-carbaldehyde thiosemicarbazone, J. Organomet. Chem., 2009, 694(25), 4069–4075.

- H. Hosseinpoor, S.M. Farid, A. Iraji, M.S. Asgari, N. Edraki, S. Hosseini, A. Jamshidzadeh, B. Larijani, M. Attarroshan, S. Pirhadi, M. Mahdavi, M. Khoshneviszadeh, Anti-melanogenesis and anti-tyrosinase properties of aryl-substituted acetamides of phenoxy methyl triazole conjugated with thiosemicarbazide: Design, synthesis, and biological evaluations, Bioorg. Chem., 2021, 114, 104979.

- F.S. Tokalı, P. Taslimi, H. Usanmaz, M. Karaman, K. Şendil, Synthesis, characterization, biological activity, and molecular docking studies of novel Schiff bases derived from thiosemicarbazide: Biochemical and computational approach, J. Mol. Struct., 2021, 1231, 129666.

- Z. Bakherad, M. Mohammadi-Khanaposhtani, H. Sadeghi-Aliabadi, S. Rezaei, A. Fassihi, M. Bakherad, H. Rastegar, M. Biglar, L. Saghaie,

B. Larijani, M. Mahdavi, New thiosemicarbazide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: Design, synthesis, and biological evaluation, J. Mol. Struct., 2019, 1192, 192–200.

- H.A. Aboseada, M.M. Hassanien, I.H. El-Sayed, E.A. Saad, Schiff base 4-ethyl-1-(pyridin-2-yl) thiosemicarbazide up-regulates the antioxidant status and inhibits the progression of Ehrlich solid tumor in mice, Biochem. Biophys. Res. Commun., 2021, 573, 42–47.

- A.A. Altalhi, H.E. Hashem, N.A. Negm, E.A. Mohamed, E.M. Azmy, Synthesis, characterization, computational study, and screening of novel 1-phenyl-4-(2-phenylacetyl)-thiosemicarbazide derivatives for their antioxidant and antimicrobial activities. J. Mol. Liq., 2021, 333, 115977.

- L.S. Munaretto, M. Ferreira, D.P. Gouvêa, A.J. Bortoluzzi, L.S. Assunção, J. Inaba, T.B. Creczynski-Pasa, M.M. Sá, Synthesis of isothiosemicarbazones of potential antitumoral activity through a multicomponent reaction involving allylic bromides, carbonyl compounds and thiosemicarbazide, Tetrahedron, 2020, 76(23), 131231.

- D.B. Patel, D.G. Darji, K.R. Patel, D.P. Rajani, S.D. Rajani, H.D. Patel, Synthesis of novel quinoline‐thiosemicarbazide hybrids and evaluation of their biological activities, molecular docking, molecular dynamics, pharmacophore model studies, and ADME‐Tox properties, J. Heterocycl. Chem., 2020, 57(3), 1183–1200.

- D.B. Patel, K.D. Patel, N.P. Prajapati, K.R. Patel, D.P. Rajani, S.D. Rajani, N.S. Shah, D.D. Zala, H.D. Patel, Design, Synthesis, and Biological and In Silico Study of Fluorine‐Containing Quinoline Hybrid Thiosemicarbazide Analogues, J. Heterocycl. Chem., 2019, 56(8), 2235–2252.

- B. Šarkanj, M. Molnar, M. Čačić, L. Gille, 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties, Food Chem., 2013, 139(1), 488–495.

- T. Panneerselvam, J.R. Mandhadi, Microwave-assisted synthesis and antimicrobial evaluation of novel substituted thiosemicarbazide derivatives of pyrimidine, J. Heterocycl. Chem., 2020, 57(8), 3082–3088.

- P.T. Acharya, Z.A. Bhavsar, D.J. Jethava, D.B. Patel, H.D. Patel, A review on the development of bio-active thiosemicarbazide derivatives: Recent advances, J. Mol. Struct., 2021, 1226, 129268.

- M.S. Refat, A.A.M. Belal, I.I. El-Deen, N. Hassan, R. Zakaria, Synthesis, spectroscopic, thermal, and antimicrobial investigations of new mono and binuclear Cu(II), Co(II), Ni(II), and Zn(II) thiosemicarbazide complexes, J. Mol. Struct., 2020, 1218(5), 128516.

- Y. Wang, H.-Q. Chang, W.-N. Wu, X.-J. Mao, X.-L. Zhao, Y. Yang, Z.-Q. Xu, Z.-H. Xu, L. Jia, A highly sensitive and selective colorimetric and off–on fluorescent chemosensor for Cu2+ based on rhodamine 6G hydrazide bearing thiosemicarbazide moiety, J. Photochem. Photobiol. A Chem., 2017, 335, 10-16.

- V. Arion, K. Wieghardt, T. Weyhermueller, E. Bill, V. Leovac, A. Rufinska, Synthesis, structure, magnetism, and spectroscopic properties of some mono- and dinuclear nickel complexes containing noninnocent pentane-2,4-dione bis(S-alkylisothiosemicarbazonate)- derived ligands, Inorg. Chem., 1997, 36, 661–669.

- A. Fetoh, M.A. Mohammed, M.M, Youssef, G.M.A. El-Reash, Investigation (IR, UV-visible, fluorescence, X-ray diffraction and thermogravimetric) studies of Mn(II), Fe(III) and Cr(III) complexes of thiosemicarbazone derived from 4-pyridyl thiosemicarbazide and monosodium 5-sulfonatosalicylaldehyde and evaluation of their biological applications, J. Mol. Struct., 2023,1271, 134139.

- N. Raman, A. Selvan, P. Manisankar, Spectral, magnetic, biocidal screening, DNA binding and photocleavage studies of mononuclear Cu(II) and Zn(II) metal complexes of tricoordinate heterocyclic Schiff base ligands of pyrazolone and semicarbazide/thiosemicarbazide based derivatives, Spectrochim. Acta, Part A, 2010, 76(2), 161–173.

- S. Chandra, X. Sangeetika, EPR, magnetic and spectral studies of copper(II) and nickel(II) complexes of Schiff base macrocyclic ligand derived from thiosemicarbazide and glyoxal. Spectrochim, Acta, Part A, 60(1), 2004, 147–153.

- A. Shaikh, P. Mukherjee, S. Ta, A. Bhattacharyya,

A. Ghosh, D. Das, Oxidative cyclization of thiosemicarbazide: a chemodosimetric approach for the highly selective fluorescence detection of cerium(IV), New J. Chem., 2020, 44(22), 9452–9455.

- Y. Wang, H.-Q. Chang, W.-N. Wu, X.-J. Mao, X.-L. Zhao, Y. Yang, Z.-Q. Xu, Z.-H. Xu, L. Jia, A highly sensitive and selective colorimetric and off–on fluorescent chemosensor for Cu2+ based on rhodamine 6G hydrazide bearing thiosemicarbazide moiety, J. Photochem. Photobiol., A, 2017, 335, 10–16.

- S. Angupillai, J.-Y. Hwang, J.-Y. Lee, B.A. Rao, Y.-A. Son, Efficient rhodamine-thiosemicarbazide-based colorimetric/fluorescent ‘turn-on’ chemodosimeters for the detection of Hg2+ in aqueous samples, Sens. Actuators, B, 2015, 214, 101–110.

- M. Salavati-Niasari, Host (nanocage of zeolite–Y)/guest manganese(II), cobalt(II), nickel(II) and copper(II) complexes of 12-membered macrocyclic Schiff-base ligand derived from thiosemicarbazide and glyoxal) nanocomposite materials: Synthesis, characterization and catalytic oxidation of cyclohexene, J. Mol. Catal. A: Chem., 2008, 283(1), 120–128.

- B. Pouramiri, E.T. Kermani, Lanthanum(III) chloride/chloroacetic acid as an efficient and reusable catalytic system for the synthesis of new 1-((2-hydroxynaphthalen-1-yl) (phenyl) methyl) semicarbazides/thiosemicarbazides, Arabian J. Chem., 2017, 10, S730–S734.

- M.R. Maurya, B. Sarkar, A. Kumar, N. Ribeiro, A. Miliute, J.C. Pessoa, New thiosemicarbazide and dithiocarbazate based oxidovanadium(IV) and dioxidovanadium(V) complexes. Reactivity and catalytic potential, New J. Chem., 2019, 43(45), 17620–17635.

- P.P. Netalkar, S.P. Netalkar, V.K. Revankar, Transition metal complexes of thiosemicarbazone: Synthesis, structures and invitro antimicrobial studies, Polyhedron, 2015, 100, 215–222.

- O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr., 2009, 42(2), 339–341.

- G.M. Sheldrick, SHELXT – Integrated space-group and crystal-structure determination, Acta Crystallogr., Sect. A: Found. Adv., 2015, C71, 3–8.

- G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3–8.

- L.J. Farrugia, WinGX and ORTEP for Windows: an update, J. Appl. Crystallogr., 2012, 45(4), 849–854.

- J. Garcı́a-Tojal, A. Garcı́a-Orad, A.A. Dı́az, J.L. Serra, M.K. Urtiaga, M.I. Arriortua, T. Rojo, Biological activity of complexes derived from pyridine-2-carbaldehyde thiosemicarbazone: Structure of [Co(C7H7N4S)2][NCS], J. Inorg. Biochem., 2001, 84(3), 271–278.

- X. Fan, J. Dong, R. Min, Y. Chen, X. Yi, J. Zhou, S. Zhang, Cobalt(II) complexes with thiosemicarbazone as potential antitumor agents: synthesis, crystal structures, DNA interactions, and cytotoxicity, J. Coord. Chem., 2013, 66(24), 4268–4279.

- A. Baysal, M. Aydemir, F. Durap, S. Özkar, L.T. Yildirim, Synthesis and structural characterization of a novel seven-coordinate cobalt(II) complex: 2,9-Bis (ethanolamine)-1,10-phenanthrolinechlorocobalt(II) chloride, Inorg. Chim. Acta, 2011, 371(1), 107–110.

- P.P. Netalkar, S.P., Revankar, V.K. Netalkar, Transition metal complexes of thiosemicarbazone: Synthesis, structures and invitro antimicrobial studies, Polyhedron, 2015, 100, 215–222.

- A.V. Pestov, P.A. Slepukhin, O.V. Koryakova, V.N. Charushin, Nickel(II) and copper(II) complexes based on N-(2-carboxyethyl)alkanolamines: Influence of the amino alcohol structure on the coordination sphere of the metal center, Russian J. Coord. Chem., 2014, 40(4), 216–223.

- A.A. El-Sherif, A. Fetoh, Y.K. Abdulhamed, G.M.A. El-Reash, Synthesis, structural characterization, DFT studies and biological activity of Cu(II) and Ni(II) complexes of novel hydrazone, Inorg. Chim. Acta, 2018, 480, 1–15.

- A. Akbari, H. Ghateazadeh, R. Takjoo, B. Sadeghi-Nejad, M.Mehrvar, J.T. Mague, Synthesis crystal structures of four new biochemical active Ni(II) complexes of thiosemicarbazone and isothiosemicarbazone-based ligands: In vitro antimicrobial study, J. Mol. Struct., 2019, 1181,


- N.C. Saha, R.J. Butcher, S. Chaudhuri, N. Saha, Synthesis and spectroscopic characterisation of new nickel (II) complexes with 5-methyl-3-formylpyrazole-3-piperidinylthiosemicarbazone (HMPz3Pi): X-ray structures of HMPz3Pi and [Ni(HMPz3Pi)2]Cl2·2H2O with indication for unusual rotation about the azomethine double bond of the free ligand on complexation, Polyhedron, 2005, 24(9), 1015–1022.

- S.M. Kumar, K. Dhahagani, J. Rajesh, K. Nehru, J. Annaraj, G. Chakkaravarthi, G. Rajagopal, Synthesis, characterization, structural analysis and DNA binding studies of nickel(II)–triphenylphosphine complex of ONS donor ligand – Multisubstituted thiosemicarbazone as highly selective sensor for fluoride ion, Polyhedron, 2013, 59, 58–68.

- P. Anitha, R. Manikandan, P. Vijayan, G. Prakash, P. Viswanathamurthi, R.J. Butcher, Nickel(II) complexes containing ONS donor ligands: Synthesis, characterization, crystal structure and catalytic application towards C-C cross-coupling reactions, J. Chem. Sci., 2015, 127(4), 597–608.

- L. Yang, D.R. Powell, R.P. Houser, Structural variation in copper (i) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4, Dalton Trans., 2007, 955–964.

- A.S. Abdelrazeq, H.A. Ghabbour, A.A. El-Emam, D.A. Osman, S. Garcia-Granda, Synthesis and crystal structure of 3-(adamantan-1-yl)-4-(2-bromo-4-fluorophenyl)-1H-1,2,4-triazole-5(4 H)-thione, Acta Crystallogr., Sect. E: Crystallogr. Commun., 2020, 76(2), 162–166.

- P.P. Netalkar, S.P. Netalkar, V.K. Revankar, Transition metal complexes of thiosemicarbazone: Synthesis, structures and invitro antimicrobial studies, Polyhedron, 2015, 100, 215–222.

- I.M. Shahid, M. Ahmad, M. Rahisuddin, R. Arif, S. Tasneem, F. Sama, I.A. Ansari, Synthesis, crystal structures, photoluminescence, magnetic and antioxidant properties, and theoretical analysis of Zn(II) and Cu(II) complexes of an aminoalcohol ligand supported by benzoate counter anions, New J. Chem., 2019, 43(2), 622–633.

- M.K. Bharty, R.K. Dani, P. Nath, A. Bharti, N.K. Singh, O. Prakash, R.K. Singh, R.J. Butcher, Syntheses, structural and thermal studies on Zn(II) complexes of 5-aryl-1,3,4-oxadiazole-2-thione and dithiocarbamates: Antibacterial activity and DFT calculations, Polyhedron, 2015, 98, 84–95.

- B.S. Stadelman, J.M. Murphy, A.M. Owen, R. Castro-Ramírez, H.C. Smith, C.M. Cohen, L.X. Zhang, C.A. Bayse, C. D. McMillen, N. Barba-Behrens, J.L. Brumaghim, Zinc(II) thione and selone complexes: The effect of metal redox activity on ligand-based oxidation, Inorg. Chim. Acta, 2020, 502, 119379.

- K. Karrouchi, S.A. Brandán, Y. Sert, M.E. Karbane, S. Radi, M. Ferbinteanu, Y, Garcia, M. Ansar, Synthesis, structural, molecular docking and spectroscopic studies of (E)-N’-(4-methoxybenzylidene)-5-methyl-1H-pyrazole-3- carbohydrazide, J. Mol. Chem., 2021, 1225, 129072.

- C. Ndoye, G. Excoffier, G.A. Seck, O. Diouf, I.E. Thiam, M. Sidibe, M. Gaye, Crystal structures of bis[1-(1-hydroxypropan-2-ylidene)thiosemicarbazide-κ3S, N, O)cobalt(III)-tetra(thiocyanato-κN) cobalt(II) methanol solvate, bis{1-(1-hydroxypropan-2-ylidene) thiosemicarbazide-κ3S, N, O}nickel(II) bis(thiocyanate) and (1-(1-hydroxypropan-2-ylidene) thiosemicarbazide-κ3S, N, O)bis(thiocyanato-κN)zinc(II), Eur. J. Chem., 2022, 13(2), 196–205.

- H. Sakiyama, K. Tone, M. Yamasaki, M. Mikuriya, Electronic spectrum and magnetic properties of a dinuclear nickel(II) complex with two nickel(II) ions of C2-twisted octahedral geometry, Inorg. Chim. Acta, 2011, 365(1), 183–189.

- Z. Trávníček, R. Pastorek, V. Slovák, Novel octahedral nickel(II) dithiocarbamates with bi- or tetradentate N-donor ligands: X-ray structures of [Ni(Bzppzdtc)(phen)2]ClO4·CHCl3 and [Ni(Bz2dtc)2(cyclam)], Polyhedron, 2008, 27(1), 411–419.

- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, (Fifth ed.), Wiley, New York, 1986.

- A.K. Srivastava, K. Srivastava, P. Yadav, J. Prasad, A.K. Maurya, Synthesis, characterization, biological (in vitro) activity and electrochemical studies of mixed-ligand copper (II) and cobalt (II) complexes with picolinic acid and imides, Chem. Data Collect., 2021, 31, 100620.

- M.H. Sadhu, A. Solanki, S.B. Kumar, Mixed ligand complexes of copper(II), cobalt(II), nickel(II) and zinc(II) with thiocyanate and pyrazole based tetradentate ligand: Syntheses, characterizations and structures, Polyhedron, 2015, 100, 206–214.

- N. Gupta, R. Gupta, S. Chandra, S.S. Bawa, Magnetic, electronic and electrochemical studies of mono and binuclear Cu(II) complexes using novel macrocyclic ligands, Spectrochim. Acta, Part A, 2005, 61(6), 1175–1180.

- W.J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coord. Chem. Rev., 1971, 7(1), 81–122.



  • There are currently no refbacks.

Copyright (c) 2023 Mediterranean Journal of Chemistry