Cover Image

Comparative Study on the Determination of Rare Earth Elements by ICP-OES

Azza Fahmy Elwakil


Matrix interference is a problem during the rare earth elements determination by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in geological rock samples. An international standard rock sample (GS-N) was used to construct the calibration curves and minimize the effect of interference. The physical parameters of the instrument were adjusted, and the most sensitive line was chosen for each element with a detection limit ranging from 5 to 50 ppb and RSD% not exceed to 1.2. On the other hand, the incomplete digestion due to the presence of some acid resistance minerals, including rare earth elements such as zircon, is another problem that was overcome by alkali fusion digestion, international standard rock sample (MA-N) was used to evaluate the results.

The granitic sample was collected from Ras Abdah area, Safaga city, The Red Sea Coast and digested by acids (H.F. and H2SO4) and by alkali fusion with (Na2CO3 and H3BO4) to determine the rare earth elements by using the calibration curves made by (GS-N) classic rock and compare the results, the rare earth contents were normalized to chondrite abundance in each case of digestion to confirm the obtained results. 

Full Text:



- V. Balaram, Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact, Geoscience Frontiers, 2019, 10, 1285-1303.

- J. Dostal, Rare earth element deposits of alkaline igneous rocks, Resources, 2017, 6, 1-2.

- G. N. Hanson, Rare earth elements in petrogenetic studies of igneous systems, Ann. Rev. Earth Planet Sci., 1980, 8, 371-406.

- P. Henderson, rare earth element geochemistry, Elsevier Amsterdam, 1984, 510.

- A. G. Herrmann, K. H. Wedepole, Untersuchungen an spilitischen Gesteinen der variskischen Geosynkline in Nordwestdeutschland, Contributions to mineralogy and petrology, 1970, 29, 255-274.

- T. H. Green, A. O. Brunfelt, K. S. Heirer, Rare-earth element distribution and K/Rb ratios in granulites, mangerites and anorthosites, Lofoten-Vesteraalen, Norway, Geochimica et Cosmochimica Acta, 1972, 36, 241-257.

- A. Masuda, Regularities in Variation of Relative Abundances of Lanthanide Elements and an Attempt to Analyse Separation-Index Patterns of Some Minerals, The Journal of Earth Sciences, Nagoya University, 1962, 10, 173-187.

- E. A. K. middlemost, A simple classification of volcanic rocks, Bulletin Volcanologique, 1972, 36, 382-397

- H. Kuno, Lateral variation of basalt magma type across continental margins and Island Arcs, Bull. Volcanol., 1966, 29, 195–222.

- A. Miyashiro, Volcanic rock series in island arcs and active continental margins, Amer. Jour. Sci., 1974, 274, 321-355.

- T. X. Phuoc, P. Wang, D. McIntyre, Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS), Fuel, 2016, 163, 129–132.

- S. Cao, C. Zhou, J. H. Pan, C. Liu, M. Tang, elements from coal

W. Ji, T. Hu, N. Zhang, Study on influence factors of leaching of rare earth

fly ash, Energy Fuels, 2018, 32, 8000–8005.

- A. Kolker, C. Scott, J. C. Hower, J. A. Vazquez, C. L. Lopano, S. Dai, Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe, Int. J. Coal Geol., 2017, 184, 1–10.

- C. D. Amaral, C. R. Machado, J. A. Barros, A. Virgilio, D. Schiavo, A. R. A. Nogueira, J. A. Nobrega, Determination of Rare Earth Elements in Geological and Agricultural Samples by ICP-OES, Spectroscopy, 2017, 32, 32-36.

- H. Tao, Y. Iwata, T. Hasegawa, Y. Nojiri, H. Haraguchi, K. Fuwa, Simultaneous multielement determination of major, minor, and trace elements in soil and rock samples by inductively coupled plasma emission spectrometry, Bull. Chem. Soc. Jpn., 1983, 56, 1074-1079.

- J. G. Crock, F. E. Lichte, Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry, Anal. Chem., 1982, 54, 1329-1332.

- J. N. Walsh, F. Buckley, j. Barker, The simultaneous determination of the rare-earth elements in rocks using inductively coupled plasma source spectrometry, Chem. Geol., 1981, 33, 141-153.

- K. Yoshida, H. Haraguchi, Determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission, Anal. Chem., 1984, 56, 2580-2585.

- K. Iwasaki, K. Fuwa, H. Haraguchi, Simultaneous determination of 14 lanthanides and yttrium in rare earth ores by inductively-coupled plasma atomic emission spectrometry, Anal. Chem. Acta, 1986, 183, 239-249.

- K. Toyoda, H. Haraguchi, Determination of rare-earth elements in geological standard rock samples by inductively coupled plasma atomic emission-spectrometry, Chem. Lett., 1985, 7, 981-984.

- F. D. Kin, M. I. Prudêncio, M. A. Gouveia, E. Magnusson, determination of rare earth elements in geological reference materials: A comparative study by INAA and ICP-MS, Geostandard Newsletter, 1999, 23, 47-58.

- M. Totland, I. Jarvis, K. E. Jarvis, An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry, Chemical geology, 1992, 95, 35-62.

- C. Tsai, S. Yeh, Determination of rare earth elements in Taiwan monazite by chemical neutron activation analysis. Journal of radio-analysis and nuclear chemistry, 1997, 216, 241-245.

- A. F. El-Wakil, Trace elements mobility and partitioning in zircon of Gabal Bab El-Mekhaniq granites, North Eastern desert, Egypt, Nuclear sciences Scientific Journal, 2015, 4, 141-150.

- P. W. O. Hoskin, U. Schaltegger, The composition of zircon and igneoud and metamorphic pertogenesis., Reviews in Mineralogy & Geochemistry, 2003, 53, 27-62.

- E. B. Watson, Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geologic models and implications for isotopic inheritance, Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1996, 87, 43-56.

- H. P. Longerich, G. A. Jenner, B. J. Fryer, S. E. Jackson, inductively coupled Plasma mass spectrometric analysis of geological samples: a critical evaluation based on case studies, Chem. Geol., 1990, 83,105-118.

- N. Imai, Multi-element analysis of rocks with the use of geological certified reference material by inductively coupled plasma mass spectrometry, Anal. Sci., 1990, 6, 389-395.

- T. Yoshida, S. Yamasaki, A. Tsumura, Determination of trace and ultra-trace elements in 32 international geostandards by ICP-MS, J. Min. Petr. Econ. Geol., 1992, 87, 107-122.

- F. G. Pinto, R. E. Junior, T. D. S. Pierre, Sample preparation for determination of rare earth elements in geological samples by ICP-MS, Analytical Letters, 2012, 45, 1537-1556.

- E. Bauer-Wolf, W. Wegscheider, s. Posch, G. Knapp, H. Kolmer, F. Panholzer, Determination of traces of rare earth elements in geological samples, Talanta, 1993, 40, 9-15.

- V. A. Janasi, Adaptation of ICP-OES routine, determination techniques for the analysis of rare earth elements by chromatographic separation in geologic materials: tests with reference materials and granitic rocks, Journal of alloys and compounds, 2002, 344, 40-45.

- I. Aaron, B. Kndowska, E. Bulska, Determination of rare earth elements in geological samples by ICP-OES., Atomic Spectroscopy, 2000, 21, 105-110.

- J. R. Webster, M. S. Gilstrap, Matrix-independent separation of rare-earth elements and yttrium from geological materials using constant calcium content-oxalate precipitation and cation exchange for determination by high-resolution inductively coupled plasma atomic emission spectrometry (ICP-AES), Chem. Geol., 1990, 85, 287-294.

- S. Y. Karakas, Determination of major and rare earth elements in bastansite ores by ICP-AES, Analytical Lett., 2004, 37, 2701-2709.

- F. E. Lichte, A. L. Meier, J. G. Crock, Determination of the rare earth elements in geological materials by inductively coupled plasma mass spectrometry, Anal. Chem., 1987, 59, 1150-1157.

- T. Mochizuki, A. Sakashita, Y. Ishibashi, N. Gunji, H. Iwata, Alkali fusion / ICP-MS for rapid determination of trace elements in silicate rocks, Bunseki Kagaku, 1990, 39, T169-T174.

- G. A. Jenner, H. P. Longerich, S. E. Jackson, B. J. Fryer, ICP-MS A powerful tool for high precision trace-element analysis in earth science: evidence from analysis of selected U. S. G. S. reference samples, Chem.Geol., 1990, 83, 133-148.

- T. Hirata, H. Shimizu, T. Akagi, H. Sawatari, A. Masuda, Precise determination of rare earth elements in geological standard rocks by inductively coupled plasma source mass spectrometry, Anal. Sci., 1988, 4, 637-643.

- M. B. Shabani, A. Masuda, Sample introduction by online two-stage solvent extraction and back extraction to eliminate matrix interference and enhance sensitivity in determining rare earth elements with inductively coupled plasma mass spectrometry, Anal. Chem., 1991, 63, 2099-2105.

- M. Ujlle, N. Imai, Analysis of rare earth elements in standard smples of granitic rocks by inductively coupled plasma mass spectrometry

after acid digestion and alkali fusion, J. Min. Petr. Econ. Geol., 1995, 90, 419-427.

- S. M. Maclennan, S. R. Taylor, Rare earth element mobility associated with uranium mineralization, Nature, 1979, 282, 247-25.

- D. A. Mineyev, Geochemical differentiation of rare earth, Geochemistry, 1963, 12, 1129-1149.

- P. W. O. Hoskin, L. P. Black, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon, J. Metamorphic Geol., 2000, 18, 423- 439.

- J. R. Finch, J. M. Hanchar: Structure and chemistry of zircon and zircon- group minerals, Rev. Mineral. Geochem. 2003, 53: 1–25.



  • There are currently no refbacks.

Copyright (c) 2022 Mediterranean Journal of Chemistry