Glycyrrhetinic amides and their cytotoxicity
DOI:
https://doi.org/10.13171/mjc02110161595CesukAbstract
3-O-Acetyl-glycyrrhetinic amides were prepared, and sulforhodamine B assays investigated their cytotoxicity. Their cytotoxicity strongly depended on the substitution pattern of the respective compounds. Thereby, an ethylenediamine-derived compound 2 performed the best, acting mainly by apoptosis. As far as heterocyclic amides are concerned, ring enlargement and the replacement of the distal nitrogen invariably led to a more or less complete loss of cytotoxic activity. Thus, the presence of a carbonyl function (C-30) seems necessary for providing significant cytotoxicity.References
- X. Feng, L. Ding, F. Qiu, Potential drug interactions associated with glycyrrhizin and glycyrrhetinic acid, Drug Metab. Rev., 2015, 47, 229-238.
- H. Hussain, I.R. Green, U. Shamraiz, M. Saleem, A. Badshah, G. Abbas, N. Ur Rehman, M. Irshad, Therapeutic potential of glycyrrhetinic acids: a patent review (2010-2017), Expert Opin. Ther. Pat., 2018, 28, 383-398.
- X. Li, R. Sun, R. Liu, Natural products in licorice for the therapy of liver diseases: Progress and future opportunities, Pharmacol. Res., 2019, 144, 210-226.
- S.A. Richard, Exploring the pivotal immunomodulatory and anti-inflammatory potentials of glycyrrhizic and glycyrrhetinic acids, Mediators Inflammation, 2021.
- A. Roohbakhsh, M. Iranshahy, M. Iranshahi, Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship, Curr. Med. Chem., 2016, 23, 498-517.
- H. Sharma, P. Kumar, R.R. Deshmukh, A. Bishayee, S. Kumar, Pentacyclic triterpenes: New tools to fight metabolic syndrome, Phytomedicine, 2018, 50, 166-177.
- Z.H. Tang, T. Li, Y.G. Tong, X.J. Chen, X.P. Chen, Y.T. Wang, J.J. Lu, A Systematic Review of the Anticancer Properties of Compounds Isolated from Licorice (Gancao), Planta Med., 2015, 81, 1670-1687.
- S. Wang, Y. Zhang, T. Zhang, J. Wang, W. Xu, Y. Zhang, Y. Luo, C. Jin, Advances in research on anti-cancer mechanism of 18β glycyrrhetinic acid, Med. Plant, 2019, 10, 10-12.
- R. Yang, L.q. Wang, B.c. Yuan, Y. Liu, The Pharmacological Activities of Licorice, Planta Med., 2015, 81, 1654-1669.
- R. Yang, B.C. Yuan, Y.S. Ma, S. Zhou, Y. Liu, The anti-inflammatory activity of licorice, a widely used Chinese herb, Pharm. Biol., 2017, 55, 5-18.
- B. Brandes, S. Hoenke, L. Fischer, R. Csuk, Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids, Eur. J. Med. Chem., 2020, 185, 111858.
- M. Huang, P. Gong, Y. Wang, X. Xie, Z. Ma, Q. Xu, D. Liu, Y. Jing, L. Zhao, Synthesis and antitumor effects of novel 18β-glycyrrhetinic acid derivatives featuring an exocyclic α,β-unsaturated carbonyl moiety in ring A, Bioorg. Chem., 2020, 103, 104187.
- O. Kazakova, I. Smirnova, E. Tretyakova, R. Csuk, S. Hoenke, L. Fischer, Cytotoxic Potential of a-Azepanoand 3-Amino-3,4-SeCo-Triterpenoids, Int. J. Mol. Sci., 2021, 22, 1714.
- L. Li, S. Han, C. Yang, L. Liu, S. Zhao, X. Wang, B. Liu, H. Pan, Y. Liu, J. Pan, Y. Wang, J. Li, B. Jiang, R. Liu, X. Wang, X. Zhang, R. Zhang, Z.A. Qiao, Glycyrrhetinic acid modified MOFs for the treatment of liver cancer, Nanotechnology, 2020, 31, 325602.
- A.V. Markov, K.V. Odarenko, A.V. Sen'kova, O.V. Salomatina, N.F. Salakhutdinov, M.A. Zenkova, Cyano enone-bearing triterpenoid soloxolone methyl inhibits epithelial-mesenchymal transition of human lung adenocarcinoma cells in vitro and metastasis of murine melanoma in vivo, Molecules, 2020, 25, 5925.
- J. Shi, J. Li, J. Li, R. Li, X. Wu, F. Gao, L. Zou, W.W.S. Mak, C. Fu, J. Zhang, G.P.H. Leung, Synergistic breast cancer suppression efficacy of doxorubicin by combination with glycyrrhetinic acid as an angiogenesis inhibitor, Phytomedicine, 2021, 81, 153408.
- R. Wang, W. Yang, Y. Fan, W. Dehaen, Y. Li, H. Li, W. Wang, Q. Zheng, Q. Huai, Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties, Bioorg. Chem., 2019, 88, 102951.
- R.K. Wolfram, L. Fischer, R. Kluge, D. Stroehl, A. Al-Harrasi, R. Csuk, Homopiperazine-rhodamine B adducts of triterpenoic acids are strong mitocans, Eur. J. Med. Chem., 2018, 155, 869-879.
- R.K. Wolfram, L. Heller, R. Csuk, Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis, Eur. J. Med. Chem., 2018, 152, 21-30.
- Q.X. Zheng, R. Wang, Y. Xu, C.X. He, C.Y. Zhao, Z.F. Wang, R. Zhang, W. Dehaen, H.J. Li, Q.Y. Huai, Design, preparation and studies regarding cytotoxic properties of glycyrrhetinic acid derivatives, Biol. Pharm. Bull., 2020, 43, 102-109.
- R. Sczepek, C. Nitsche, L. Heller, B. Siewert, R. Schaefer, F. Flemming, C. Otgonbayar, R. Csuk, Synthesis and cytotoxic properties of alkynic triterpenoid Mannich compounds, Mediterr. J. Chem., 2015, 4, 126-137.
- B. Brandes, L. Koch, S. Hoenke, H.P. Deigner, R. Csuk, The presence of a cationic center is not alone decisive for the cytotoxicity of triterpene carboxylic acid amides, Steroids, 2020, 163, 108713.
- S. Friedrich, I. Serbian, S. Hoenke, R.K. Wolfram, R. Csuk, Synthesis and cytotoxic evaluation of malachite green derived oleanolic and ursolic acid piperazineamides, Med. Chem. Res., 2020, 29, 926-933.
- S. Hoenke, M.A. Christoph, S. Friedrich, N. Heise, B. Brandes, H.P. Deigner, A. Al-Harrasi, R. Csuk, The presence of a cyclohexyldiamine moiety confers cytotoxicity to pentacyclic triterpenoids, Molecules, 2021, 26, 2102.
- O. Kazakova, E. Tret'yakova, D. Baev, Evaluation of A-azepano-triterpenoids and related derivatives as antimicrobial and antiviral agents, J. Antibiot., 2021.
- O. Kraft, M. Kozubek, S. Hoenke, I. Serbian, D. Major, R. Csuk, Cytotoxic triterpenoid-safirinium conjugates target the endoplasmic reticulum, Eur. J. Med. Chem., 2021, 209, 112920.
- G.E. Conway, D. Zizyte, J.R.M. Mondala, Z. He, L. Lynam, M. Lecourt, C. Barcia, O. Howe, J.F. Curtin, Ursolic acid inhibits collective cell migration and promotes JNK-dependent lysosomal associated cell death in glioblastoma multiforme cells, Pharmaceuticals, 2021, 14, 91.
- E.F. da Silva, A.S. de Vargas, J.B. Willig, C.B. de Oliveira, A.R. Zimmer, D.A. Pilger, A. Buffon, S.C.B. Gnoatto, Synthesis and antileukemic activity of an ursolic acid derivative: A potential co-drug in combination with imatinib, Chem.-Biol. Interact., 2021, 344, 109535.
- R. Hu, J. Sang, W. Li, Y. Tian, M.F. Zou, G.H. Tang, S. Yin, Structurally diverse triterpenoids with cytotoxicity from Euphorbia hypericifolia, Fitoterapia, 2021, 151, 104888.
- A.Y. Spivak, R.R. Khalitova, R.R. Gubaidullin, D.A. Nedopekina, Synthesis and cytotoxic activity of monomeric and dimeric aminocarboxamides of betulinic and ursolic acids, Chem. Nat. Compd., 2021, 57, 123-132.
- M. Yang, C. Hu, Y. Cao, W. Liang, X. Yang, T. Xiao, Ursolic acid regulates cell cycle and proliferation in colon adenocarcinoma by suppressing cyclin B1, Front. Pharmacol., 2020, 11, 622212.
- T.Y. Zhang, C.S. Li, L.T. Cao, X.Q. Bai, D.H. Zhao, S.M. Sun, New ursolic acid derivatives bearing 1,2,3-triazole moieties: design, synthesis and anti-inflammatory activity in vitro and in vivo, Mol. Diversity, 2021.
- M. Kahnt, A. Loesche, I. Serbian, S. Hoenke, L. Fischer, A. Al-Harrasi, R. Csuk, The cytotoxicity of oleanane derived aminocarboxamides depends on their aminoalkyl substituents, Steroids, 2019, 149, 108422.
- M. Kahnt, J. Wiemann, L. Fischer, S. Sommerwerk, R. Csuk, Transformation of asiatic acid into a mitocanic, bimodal-acting rhodamine B conjugate of nanomolar cytotoxicity, Eur. J. Med. Chem., 2018, 159,
-148.
- K.W. Lu, M.D. Yang, S.F. Peng, J.C. Chen, P.Y. Chen, H.Y. Chen, T.J. Lu, F.S. Chueh, J.C. Lien, K.C. Lai, K.C. Liu, Y.Y. Tai, Maslinic acid induces DNA damage and impairs DNA repair in human cervical cancer HeLa cells, Anticancer Res., 2020, 40, 6869-6877.
- I.Z. Pavel, C. Danciu, C. Oprean, C.A. Dehelean, D. Muntean, R. Csuk, D.M. Muntean, In vitro evaluation of the antimicrobial ability and cytotoxicity on two melanoma cell lines of a benzylamide derivative of maslinic acid, Anal. Cell. Pathol., 2016.
- I. Serbian, B. Siewert, A. Al-Harrasi, R. Csuk, 2-O-(2-chlorobenzoyl) maslinic acid triggers apoptosis in A2780 human ovarian carcinoma cells, Eur. J. Med. Chem., 2019, 180, 457-464.
- S. Sommerwerk, L. Heller, C. Kerzig, A.E. Kramell, R. Csuk, Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations, Eur. J. Med. Chem., 2017, 127, 1-9.
- S. Sommerwerk, L. Heller, J. Kuhfs, R. Csuk, Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines, Eur. J. Med. Chem., 2016, 119, 1-16.
- K. Vega-Granados, M. Medina-O'Donnell, F. Rivas, F.J. Reyes-Zurita, A. Martinez, L. Alvarez de Cienfuegos, J.A. Lupianez, A. Parra, Synthesis and Biological Activity of Triterpene-Coumarin Conjugates, J. Nat. Prod., 2021, 84, 1587-1597.
- U. Bildziukevich, Z. Ozdemir, Z. Wimmer, Recent achievements in medicinal and supramolecular chemistry of betulinic acid and its derivatives, Molecules, 2019, 24, 3546.
- S. Fulda, Betulinic acid: a natural product with anticancer activity, Mol. Nutr. Food Res., 2009, 53, 140-146.
- S. Fulda, G. Kroemer, Targeting mitochondrial apoptosis by betulinic acid in human cancers, Drug Discovery Today, 2009, 14, 885-890.
- M. Grymel, M. Zawojak, J. Adamek, Triphenylphosphonium Analogues of Betulin and Betulinic Acid with Biological Activity:
A Comprehensive Review, J. Nat. Prod., 2019, 82, 1719-1730.
- I. Mierina, R. Vilskersts, M. Turks, Delivery Systems for Birch-bark Triterpenoids and their Derivatives in Anticancer Research, Curr. Med. Chem., 2020, 27, 1308-1336.
- R. Mukherjee, V. Kumar, S.K. Srivastava, S.K. Agarwal, A.C. Burman, Betulinic acid derivatives as anticancer agents: structure-activity relationship, Anti-Cancer Agents Med. Chem., 2006, 6, 271-279.
- J. Sarek, M. Kvasnica, M. Vlk, D. Biedermann, in Pentacyclic triterpnes as promising agents in cancer, ed. by J.A. R. Salvador, Nova Science Publishers, Inc.: New York, 2010, 159-189.
- L. Tripathi, P. Kumar, R. Singh, A review on extraction, synthesis and anticancer activity of betulinic acid, Curr. Bioact. Compd., 2009, 5, 160-168.
- D.M. Zhang, H.G. Xu, L. Wang, Y.J. Li, P.H. Sun, X.M. Wu, G.J. Wang, W.M. Chen, W.C. Ye, Betulinic Acid and its Derivatives as Potential Antitumor Agents, Med. Res. Rev., 2015, 35, 1127-1155.
- I. Beseda, L. Czollner, P.S. Shah, R. Khunt, R. Gaware, P. Kosma, C. Stanetty, M.C. del Ruiz-Ruiz, H. Amer, K. Mereiter, T. Da Cunha, A. Odermatt, D. Classen-Houben, U. Jordis, Synthesis of glycyrrhetinic acid derivatives for the treatment of metabolic diseases, Bioorg. Med. Chem., 2010, 18, 433-454.
- E.E. Mikhlina, M.V. Rubtsov, Reaction of 3-quinuclidone with hydrazoic acid, Zh. Obshch. Khim., 1963, 33, 2167-2172.
- R. Csuk, S. Schwarz, B. Siewert, R. Kluge, D. Stroehl, Conversions at C-30 of Glycyrrhetinic Acid and Their Impact on Antitumor Activity, Arch. Pharm., 2012, 345, 223-230.
- G. Drefahl, S. Huneck, The preparation of acetylglycyrrhetinic acid and its Curtius degradation, Chem. Ber., 1961, 94, 2015-2018.
- D. Cai, Z. Zhang, Y. Meng, K. Zhu, L. Chen, C. Yu, C. Yu, Z. Fu, D. Yang, Y. Gong, Efficient synthesis of piperazinyl amides of 18β-glycyrrhetinic acid, Beilstein J. Org. Chem., 2020, 16, 798-808.
- K.A. Alibaeva, H.O. Kim, M.I. Goryaev, M.P. Irismetov, Triterpenoids. XXXI. Beckmann rearrangement of glycyrrhetic acid amides, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 1975, 25, 39-42.
- C.R. Montague, A. Fitzmaurice, B.M. Hover, N.A. Salazar, J.P. Fey, Screen for small molecules increasing the mitochondrial membrane potential, J. Biomol. Screening, 2014, 19, 387-398, 312.
- M.O. Radwan, M.A.H. Ismail, S. El-Mekkawy, N.S. M. Ismail, A.G. Hanna, Synthesis and biological activity of new 18β-glycyrrhetinic acid derivatives, Arabian J. Chem., 2016, 9, 390-399.
- C.H. Brieskorn, V. Beer, Formation of a tetraene from 18β-glycyrrhetic acid, Arch. Pharm., 1975, 308, 852-858.
- M.J. Kulshreshtha, R.P. Rastogi, 2α,3β-Dihydroxy triterpenoids. Partial syntheses of methyl alphitolate and methyl 2α-hydroxyursolate, Indian J. Chem., 1971, 9, 897-898.
- S. Rozen, I. Shahak, E.D. Bergmann, Derivatives of glycyrrhetic acid, Isr. J. Chem., 1971, 9, 185-189.
- H. Brieskorn, H. Sax, Synthesis of some derivatives of glycyrrhizic and glycyrrhetic acids, Arch. Pharm., 1970, 303, 905-912.
- P.D.G. Dean, T.G. Halsall, M.W. Whitehouse, Preparation of some derivatives of glycyrrhetic acid and oleanolic acid, J. Pharm. Pharmacol., 1967, 19, 682-689.
- R.K. Gayanov, H.O. Kim, M.P. Irismetov, M.I. Goryaev, Triterpenoids. XXXV. Reactions of glycyrrhetic acid amides, Zh. Obshch. Khim., 1978, 48, 920-923.
- C. Stanetty, L. Czollner, I. Koller, P. Shah, R. Gaware, T. Da Cunha, A. Odermatt, U. Jordis, P. Kosma, D. Classen-Houben, Synthesis of novel 3-amino and 29-hydroxamic acid derivatives of glycyrrhetinic acid as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors, Bioorg. Med. Chem., 2010, 18, 7522-7541.
- M.W. Whitehouse, P.D.G. Dean, T.G. Halsall, Uncoupling of oxidative phosphorylation by glycyrrhetic acid, fusidic acid, and some related triterpenoid acids, J. Pharm. Pharmacol., 1967, 19, 533-544.
- L.W. Zou, Y.G. Li, P. Wang, K. Zhou, J. Hou, Q. Jin, D.C. Hao, G.B. Ge, L. Yang, Design, synthesis, and structure-activity relationship study of glycyrrhetinic acid derivatives as potent and selective inhibitors against human carboxylesterase 2, Eur. J. Med. Chem., 2016, 112, 280-288.
- A. Shukla, R. Tyagi, S. Meena, D. Datta, S.K. Srivastava, F. Khan, 2D- and 3D-QSAR modelling, molecular docking and in vitro evaluation studies on 18beta-glycyrrhetinic acid derivatives against triple-negative breast cancer cell line, J. Biomol. Struct. Dyn., 2020, 38, 168-185.
- R. Tyagi, S. Verma, S. Mishra, M. Srivastava, S. Alam, F. Khan, S.K. Srivastava, In Vitro and In Silico Studies of Glycyrrhetinic Acid Derivatives as Anti- Filarial Agents, Curr. Top. Med. Chem., 2019, 19, 1191-1200.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).