Voltammetric study of formic acid oxidation via active chlorine on IrO2/Ti and RuO2/Ti electrodes
DOI:
https://doi.org/10.13171/mjc10802010271525koAbstract
This work aimed to contribute to the mechanism electrochemical oxidation study of organic compounds on DSA electrodes. To do this, IrO2 and RuO2 electrodes were prepared thermally at 40°C on Titanium substrate. The prepared electrodes were characterized using voltammetric and SEM techniques. The electrochemical measurements in acid media made it possible to show the presence of IrO2 and RuO2 on the surface of the electrode. These electrodes have identical electrocatalytic behaviors both for oxygen evolution and chlorine evolution. The prepared electrodes make it possible to oxidize the organic compounds in an acid media in the absence or in the presence of Cl-. In acidic electrolytes, water molecules produce hydroxyl radicals that contribute to the higher oxides (RuO3 or IrO3) formation. The higher oxides obtained produce O2 and regenerate the active sites of our electrodes. In the electrolytes containing chlorides, higher oxides fix them (IrO3(Cl) or RuO3(Cl)) in competition with the production of O2. Then IrO3(Cl) or RuO3(Cl) reacts with Cl- to produce Cl2 and regenerate the adsorbed hydroxyl radicals. The higher oxides also react as a mediator in HCOOH oxidation in competition with O2 evolvement. In the electrolytes containing HCOOH and Cl-, the organic pollutant's oxidation occurs indirectly via the hypochlorite ions produced in the solution and on the electrodes. This study showed that the produced OH· and Cl2 in situ are involved in the oxidation of HCOOHReferences
- C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B Environ., 2009, 87, 105–145.
- C.A. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev., 2006, 35, 1324–1340.
- M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 2009, 109, 6541–6569.
- C.A. Martinez-Huitle, E. Brillas, Angew, Electrochemical alternatives for drinking water disinfection, Angew Chem. Int. Ed., 2008, 47, 1998–2005.
- E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry, Chem. Rev., 2009, 109, 6570–6631.
- I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 2014, 21, 8336–8367.
- J.H.B. Rocha, A.M.S. Solano, N.S. Fernandes, D.R. da Silva, J.M. Peralta-Hernandez, C.A. Martínez-Huitle, Electrochemical Degradation of Remazol Red BR and Novacron Blue C-D Dyes Using Diamond Electrode, Electrocatalysis, 2012, 3, 1–12.
- J.L. Nava, M.A. Quiroz, C.A. Martínez-Huitle, Electrochemical Treatment of Synthetic Wastewaters Containing Alphazurine A Dye: Role of Electrode Material in the Colour and COD Removal, J. Mexican Chem. Soc., 2008, 52, 249–255.
- D. Shao, W. Lyu, J. Cui, X. Zhang, Y. Zhang, G. Tan, W. Yan, Polyaniline nanoparticles magnetically coated Ti/Sb–SnO2 electrode as a flexible and efficient electrocatalyst for boosted electrooxidation of biorefractory wastewater, Chemosphere, 2020, 241, 125103.
- C. Ridruejo, C. Salazar, P.L. Cabot, F. Centellas, E. Brillas, I. Sires, Electrochemical oxidation of anesthetic tetracaine in aqueous medium. Influence of the anode and matrix composition, Chem. Eng. J., 2017, 326, 811–819.
- S. Ghasemian, S. Omanovic, Fabrication, and characterization of photoelectrochemically-active Sb-doped Snx-W(100–x) %-oxide anodes: towards the removal of organic pollutants from wastewater, Appl. Surf. Sci., 2017, 416, 318–328.
- X. Li, H. Xu, W. Yan, Fabrication and characterization of PbO2 electrode modified with polyvinylidene fluoride (PVDF), Appl. Surf. Sci., 2016, 389, 278–286.
- P. Duby, The history of progress in dimensionally stable anodes, JOM, 1993, 45, 41–43.
- L.A.G. Pohan, O. Kambiré, M. Berté, L. Ouattara, Study of lifetime of Platinum Modified Metal Oxides Electrodes, Int. J. Biol. Chem. Sci., 2020, 14, 1479-1488.
- S. Trasatti, Electrocatalysis: understanding the success of DSA®, Electrochimica Acta, 2000, 45, 2377-2385.
- D. Rajkumar, J. Guk Kim, K. Palanivelu, Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment, Chemical engineering & technology, 2005, 28, 98-105.
- M.B. Gawande, R.K. Pandey, R.V. Jayaram, Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis, Catal. Sci. Technol., 2012, 2, 1113.
- G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical Supercapacitors, Chem. Soc. Rev., 2012, 41, 797–828.
- F.L. Souza, M. Aquino, D.W. Miwa, M.A. Rodrigo, A.J. Motheo, Photo-assisted electrochemical degradation of the dimethyl phthalate Ester on DSA®. Electrode, J. Environ. Chem. Eng., 2014, 2, 811–818.
- R. Pelegrini, P.P. Zamora, A.R. De Andrade, J. Reyes, N. Dura'n, Electrochemically assisted photocatalytic degradation of reactive dyes, Appl. Catal. B, 1999, 22, 83–90.
- G. Li, M. Zhu, J. Chen, Y. Li, X. Zhang, Production and contribution of hydroxyl radicals between the DSA anode and water interface,
J. Environ. Sci., 2011, 23, 744–748.
- D. Traore, A.S.M. Abdelaziz, Y.S. Brou, A. Trokourey, Determination of Cu2+ by N, N-dichromone-p-phenylenediamine modified carbon paste electrode, Int. J. Biol. Chem. Sci., 2014, 8, 2773-2785.
- K.M. Koffi, L. Ouattara, Electroanalytical Investigation on Paracetamol on Boron-Doped Diamond Electrode by Voltammetry, American Journal of Analytical Chemistry, 2019, 10, 562-578
- O. Kambire, L.A.G. Pohan, F.T.A. Appia, C.Q.M. Gnamba, K.H. Kondro, L. Ouattara, Influence of various metallic oxides on the kinetic of the oxygen evolution reaction on platinum electrodes, J. Electrochem. Sci. Eng., 2015, 5, 79-91.
- O. Kambire, L.A.G. Pohan, F.T.A. Appia, L. Ouattara, Anodic Oxidation of Chlorides on Platinum Modified by Metallic Oxides, Int. J. Pure Appl. Sci. Technol., 2015, 27, 27-43.
- O. Kambiré, L.A.G. Pohan, K.H. Kondro, L. Ouattara, Study of oxygen evolution reaction on thermally prepared xPtOy-(100-x)IrO2 electrodes, J. Electrochem. Sci. Eng., 2020, 10, 347-360.
- Y. Kang, C.B. Murray, Formic Acid Oxidation. Encyclopedia of Applied Electrochemistry, 2014, 895-901.
- O. Kambire, F.T.A. Appia, L. Ouattara, Oxygen and chlorine evolution on ruthenium dioxide modified by platinum in acid solutions, Rev. Ivoir. Sci. Technol., 2015, 25, 21-33.
- A. Kapalka, G. Fóti, C. Comninellis, Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes, Electrochemistry Communications, 2008, 10, 607-610.
- G. Rocchini, The influence of the ohmic drop on the shape of polarization curves, Corrosion Science, 1993, 34, 2019-2030.
- L.A. De Faria, J.F.C. Boodts, S. Trasatti, Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti(o.7-x)CexOz: oxygen evolution from acidic solution, Journal of Applied Electrochemistry, 1996, 26, 1195-1199.
- N. Krstajic, S. Trasatti, Cathodic behavior of RuO2-doped Ni/Co3O4 electrodes in alkaline solutions: hydrogen evolution, Journal of Applied Electrochemistry, 1998, 28, 1291-1297.
- F.T.A. Appia, C.Q.M. Gnamba, O. Kambiré, M. Berté, S.P. Sadia Sahi placide, I. Sanogo, L. Ouattara, Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti, J. Electrochem. Sci. Technol., 2016, 7, 82-89.
- M. Berté, F.T.A. Appia, I. Sanogo, L. Ouattara, Electrochemical Oxidation of the Paracetamol in its Commercial Formulation on Platinum and Ruthenium Dioxide Electrodes, Int. J. Electrochem. Sci., 2016, 11, 7736–7749
- K.H. Kondro, L. Ouattara, A. Trokourey, Y. Bokra, Investigation of the electrochemical behavior of thermally prepared Pt-IrO2 electrodes, Bull. Chem. Soc. Ethiop., 2008, 22, 125-134.
- T.C. Wen, C.C. Hu, Hydrogen and Oxygen Evolutions on Ru‐Ir Binary Oxides Journal of Electrochem. Soc., 1992, 139, 2158-2163.
- V.A. Alves, L.A. Da Silva, J.F.C. Boodts, Surface characterization of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution, Electrochimica Acta., 1998, 44, 1525-1534.
- H. Chen, S. Trasatti, Cathodic behavior of IrO2 electrodes in alkaline solution: Part 2. Kinetics and electrocatalysis of H2 evolution, Journal of Electroanalytical Chemistry, 1993, 357, 91-103.
- G. Foti, C. Mousty, V. Reid, C. Comninellis, Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor, Electrochimica Acta., 1998, 44, 813-818.
- C. Mousty, G. Fóti, C. Comninellis, V. Reid, Electrochemical behavior of DSA type electrodes prepared by induction heating, Electrochimica Acta., 1999, 45, 451-456.
- V.V. Panic, A.B. Dekanski, M. Mitrić, S.K. Milonjić, V.B. Misković-Stanković, B.Z. Nikolić, The effect of the addition of colloidal iridium oxide into sol-gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties, Phys. Chem. Chem. Phys., 2010, 12, 7521–7528.
- S. Fierro, A. Kapałka, C. Comninellis, Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution, Electrochemistry Communications, 2010, 12, 172–174
- S. Fierro, L. Ouattara, E.H. Calderon, E. Passas-Lagos, H. Baltruschat, C. Comninellis, Investigation of formic acid oxidation on Ti/IrO2 electrodes, Electrochimica Acta., 2009, 54, 2053–2061
- L. Ouattara, S. Fierro, O. Frey, M. Koudelka, C. Comninellis, Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution, J Appl Electrochem, 2009, 39, 1361–1367.
- N. Yuan, Q. Jiang, J. Li, J. Tan, A review on non-noble metal-based electrocatalysis for the oxygen evolution reaction, Arabian Journal of Chemistry, 2020, 13, 4294-4309.
- M.T. Fukunaga, J.R. Guimarães, R. Bertazzoli, Kinetics of the oxidation of formaldehyde in a flow electrochemical reactor with TiO2/RuO2 anode, Chemical Engineering Journal, 2008, 136, 236–241.
- A.L.G. Pohan, L. Ouattara, K.H. Kondro, O. Kambiré, A. Trokourey, Electrochemical Treatment of the Wastewaters of Abidjan on Thermally Prepared Platinum Modified Metal Oxides Electrodes, European Journal of Scientific Research, 2013, 94, 96-108.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).