Structure, Infrared and Raman spectroscopic studies of new AII(SbV0.50CrIII0.50)(PO4)2 (A = Ba, Sr, Pb) yavapaiite phases
DOI:
https://doi.org/10.13171/mjc10802108201448hbAbstract
Three new AII(Sb0.5Cr0.5)(PO4)2 (AII = Ba, Sr, Pb) yavapaiite phases, abbreviated as [ASbCr], have been successfully synthesized by a conventional solid-state reaction in air atmosphere. Their crystal structures have been investigated by Rietveld analysis from the X-ray powder diffraction method. Results show that Ba(Sb0.5Cr0.5)(PO4)2 crystallizes in monoclinic C2/m space group (Z = 2) with cell parameters a = 8.140(1) Å; b = 5.175(1) Å; c = 7.802(1) Å and β = 94.387(1)°. Structures of AII(Sb0.5Cr0.5)(PO4)2 (AII = Sr, Pb) compounds are comparable, and both crystallize in a distorted yavapaiite structure with C2/c space group (Z = 4). Obtained monoclinic cell parameters are: a = 16.5038(2) Å; b = 5.1632(1) Å; c = 8.0410(1) Å; β = 115.85(1) for [SrSbCr] and a = 16.684(2) Å; b = 5.156(1) Å c = 8.115(1) Å; β = 115.35(1)° for [PbSbCr]. Infrared and Raman spectroscopic study was undertaken to provide information about vibrations bonds within the studied yavapaiite materials.
References
- G. Blasse, G.J. Dirksen, The luminescence of barium titanium phosphate BaTi(PO4)2, Chem. Phys. Lett., 1979, 62, 19–20.
- W.L. Zhang, C.S. Lin, Z.Z. He, H. Zhang, Z.Z. Luo, W.D. Cheng, Syntheses of three members of A(II)M(IV)(PO4)2: luminescence properties of PbGe(PO4)2 and its Eu3+-doped powders, Cryst. En. Comm., 2013, 15, 7089–7094.
- D. Zhao, F.X. Ma, H. Yang, W. Wei, Y.C. Fan, L. Zhang, X. Xin, Structure twinning, electronic and photoluminescence properties of yavapaiite-type orthophosphate BaTi(PO4)2, J. Phys. Chem. Solids, 2016, 99, 59–65.
- C.R. Miao, C.C. Torardi, A New High-Efficiency UV-Emitting X-ray Phosphor, BaHf1−xZrx(PO4)2, J. Solid State Chem., 2000, 155, 229–232.
- Y. Jiang, L. Wei, C. Xiyu, S. Ge, C. Lixin, G. Rongjie, Synthesis and luminescence of β-SrGe(PO4)2: RE (RE= Eu2+, Eu3+, Tb3+) phosphors for UV light-emitting diodes, J. Rare Earths, 2017, 35, 142–148.
- A.H. Abdeldaim, D.I. Badrtdinov, A.S. Gibbs, P. Manuel, H.C. Walker, M.D. Le, C.H. Wu, D. Wardecki, S.G. Eriksson, Y.O. Kvashnin, others, Large easy-axis anisotropy in the one-dimensional magnet BaMo(PO4)2, Phys. Rev. B: Condens. Matter., 2019, 100, 214427.
- F. Tudorache, K. Popa, L. Mitoseriu, N. Lupu, D. Bregiroux, G. Wallez, Dielectric investigation of MIIMIV(PO4)2 double orthophosphates (MII=Ca, Sr, Ba, Pb; MIV=Ti, Zr, Hf, Ge, Sn),
J. Alloys Compd., 2011, 509, 9127–9132.
- K. Popa, R.J. M. Konings, P. Boulet, D. Bouëxière, A.F. Popa, The high-temperature behavior of barium zirconium diorthophosphate, Thermochim. Acta, 2005, 436, 51–55.
- K. Popa, R.J.M. Konings, T. Wiss, H. Leiste, Hydrothermal alteration of BaxMIV xCe2−2x (PO4)2 [MIV=Zr, Hf] as hosts for minor actinides,
J. Radioanal. Nucl. Chem., 2007, 273, 563–567.
- S. Neumeier, Y. Arinicheva, Y. Ji, J.M. Heuser, P.M. Kowalski, P. Kegler, H. Schlenz, D. Bosbach, G. Deissmann, New insights into phosphate based materials for the immobilisation of actinides, Radiochim Acta, 2017, 105, 961–984.
- A.J. Locock, Crystal chemistry of actinide phosphates and arsenates, In Structural Chemistry of Inorganic Actinide Compounds, Elsevier, 2007, 217–278.
- D. Bregiroux, K. Popa, G. Wallez, Crystal chemistry of MIIM′IV(PO4)2 double monophosphates, J. Solid State Chem., 2015, 230, 26–33.
- N. Clavier, R. Podor, N. Dacheux, Crystal chemistry of the monazite structure, J. Eur. Ceram. Soc., 2011, 31, 941–976.
- D. Kitaev, Y.F. Volkov, A. Orlova, Orthophosphates of tetravalent Ce, Th, U, Np, and Pu with the monazite structure, Radiochemistry, 2004, 46, 211–217.
- A. Orlova, D. Kitaev, N. Kazantsev, S. Samoilov, V. Kurazhkovskaya, E. Vopilina, Double phosphates of Ce (IV) and some mono-and divalent elements: synthesis and crystal structure, Radiochemistry, 2002, 44, 326–331.
- A. Orlova, D. Kitaev, D. Kemenov, M. Orlova, G. Kazantsev, S. Samoilov, V. Kurazhkovskaya, Synthesis and Crystal-Chemical Properties of Phosphates BIIRIIIMIV(PO4)3 Containing f, d, and Alkaline-Earth Elements, Radiochemistry, 2003, 45, 103–109.
- R. Podor, M. Cuney, C.N. Trung, Experimental study of the solid solution between monazite-(La) and (Ca0.5U0.5)PO4 at 780 C and 200 MPa, Am. Mineral., 1995, 80, 1261–1268.
- K. Fukuda, A. Moriyama, T. Iwata, Crystal structure, phase transition, and anisotropic thermal expansion of barium zirconium diorthophosphate, BaZr(PO4)2, J. Solid State Chem., 2005, 178, 2144–2151.
- K. Popa, D. Bregiroux, R.J.M. Konings, T. Gouder, A.F. Popa, T. Geisler, P.E. Raison, The chemistry of the phosphates of barium and tetravalent cations in the 1:1 stoichiometry, J. Solid State Chem., 2007, 180, 2346–2355.
- K. Popa, G. Wallez, D. Bregiroux, P. Loiseau, MIIGe(PO4)2 (M=Ca, Sr, Ba): Crystal structure, phase transitions and thermal expansion, J. Solid State Chem., 2011, 184, 2629–2634.
- A. Leclaire, M. Barel, J. Chardon, B. Raveau, A Mo (IV) monophosphate, BaMo(PO4)2, with the yavapaiite layer structure, J. Solid State Chem., 1995, 116, 364–368.
- E. Morin, G. Wallez, S. Jaulmes, J.C. Couturier, M. Quarton, Structure of PbIISnIV(PO4)2: Stereochemical Activity of the Lead II Lone Pair, J. Solid State Chem., 1998, 137, 283–288.
- K. Fukuda, K. Fukutani, Crystal structure of calcium zirconium diorthophosphate, CaZr(PO4)2, Powder Diffr., 2003, 18, 296–300.
- D. Zhao, H. Zhang, Z. Xie, W.L. Zhang, S.L. Yang, W.D. Cheng, Syntheses, crystal and electronic structures of compounds AM(PO4)2
(A = Sr, M = Ti, Sn; A = Ba, M = Sn), Dalton Trans., 2009, 5310–5318.
- A. Aatiq, R. Hassine, M.R. Tigha, I. Saadoune, Structures of two newly synthesized A0.50SbFe(PO4)3 (A= Mn, Cd) Nasicon phases, Powder Diffr., 2005, 20, 33–39.
- A. Aatiq, M.R. Tigha, R. Hassine, I. Saadoune, Crystallochemistry, and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases, Powder Diffr., 2006, 21, 45–51.
- A. Aatiq, M.R. Tigha, S. Benmokhtar, Structure, infrared, and Raman spectroscopic studies of new Sr0.50SbFe(PO4)3 and SrSb0.50Fe1.50(PO4)3 Nasicon phases, J. Mater. Sci., 2012, 47, 1354–1364.
- M. Varma, H. Poswal, S. Velaga, Pressure-induced phase transitions in BaZr(PO4)2 studied using x-ray diffraction, Raman spectroscopy, and first-principles calculations, J. Appl. Phys., 2020, 127, 135902.
- G. Wallez, D. Bregiroux, K. Popa, P.E. Raison, C. Apostolidis, P. Lindqvist-Reis, R.J.M. Konings, A.F. Popa, BaAnIV(PO4)2 (AnIV = Th, Np)-A New Family of Layered Double Phosphates, Eur. J. Inorg. Chem., 2011, 2011, 110–115.
- M. Keskar, B.G. Vats, R. Phatak, K. Krishnan, S.K. Sali, S. Kannan, Structural and thermal studies of SrU(PO4)2 and BaU(PO4)2, J. Alloys Compd., 2017, 725, 1199–1209.
- N. Sarukhanyan, L. Iskhakova, V. Trunov, Crystal structure of RbEu(SO4)2, Kristallografiya, 1983, 28, 452 456.
- K. Popa, G. Wallez, P.E. Raison, D. Bregiroux, C. Apostolidis, P. Lindqvist-Reis, R.J.M. Konings, SrNp(PO4)2 : an Original Ordered Modification of Cheralite, Inorg. Chem., 2010, 49, 6904–6908.
- A. Aatiq, M.R. Tigha, R. Fakhreddine, D. Bregiroux, G. Wallez, Structure, infrared and Raman spectroscopic studies of newly synthetic AII(SbV0.50FeIII0.50)(PO4)2 (A = Ba, Sr, Pb) phosphates with yavapaiite structure, Solid State Sci., 2016, 58, 44–54.
- R. Fakhreddine, A. Aatiq, Structure, Infrared and Raman spectroscopic studies of the new Ba(NbV0.5MIII0.5)(PO4)2 (MIII =Al, Cr, Fe, In) yavapaiite compounds ‘series, Mediterr. J. Chem., 2019, 8, 397 408.
- J. Rodriguez-Carvajal, Collected abstract of powder diffraction meeting, Toulouse Fr, 1990, 127.
- T. Roisnel, J. Rodríquez-Carvajal, WinPLOTR: a windows tool for powder diffraction pattern analysis, In Materials Science Forum, Transtec Publications, 1999, 378, 118–123.
- I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallogr., Sect. B: Struct. Sci., 1985, 41, 244–247.
- T. Hahn, U.Shmueli, J.W. Arthur, International Tables for Crystallography, Vol. A. space-group symmetry, D. Reidel Publ. Co., Dordrecht, Holland/Boston, Crystal Research and Technology, 1984, 1306.
- M.T. Paques-Ledent, AIIBIV(XO4)2 phosphates and arsenates with yavapaiite structure I: isostructural relationship and vibrational study,
J. Inorg. Nucl. Chem., 1977, 39, 11–17.
- L. Popović, D. de Waal, J.C.A. Boeyens, Correlation between Raman wavenumbers and P-O bond lengths in crystalline inorganic phosphates, Journal Raman Spectroscopy, 2005, 36, 2-11.
- N. Anantharamulu, K.K. Rao, M. Vithal, G. Prasad, Preparation, characterization, impedance, and thermal expansion studies of Mn0.5MSb(PO4)3 (M = Al, Fe, and Cr), J. Alloys Compd., 2009, 479, 684–691.
- A. Aatiq, A. Marchoud, H. Bellefqih, M.R. Tigha, Structural, and Raman spectroscopic studies of the two M0.50SbFe(PO4)3 (M= Mg, Ni) NASICON phases, Powder Diffr., 2017, 32, S40–S51.
- M. Barj, G. Lucazeau, C. Delmas, Raman, and infrared spectra of some chromium Nasicon-type materials: short-range disorder characterization, J. Solid State Chem., 1992, 100, 141-150.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).