Cover Image

Orbital Analysis of Natural Bonds, Calculations of the Functional Theory of Density Time-Dependent and Absorption Spectral of a Series of Rhodanine Derivatives

Koffi Alexis Respect Kouassi, Anoubilé Benié, kouakou Nobel N’guessan, Mamadou Guy-Richard Koné, Adenidji Ganiyou, Kouadio Valery Bohoussou, Wacothon Karime Coulibaly


In this work, the density functional theory (DFT) method at the B3LYP/6-31 + G (d, p) level has used to determine the optimization of five rhodanine derivatives. The stability of the derivatives (7a-7e) of 5-arylidene rhodanine, the hyperconjugative interactions, the delocalization of the atomic charges was analyzed with the analysis of the Natural Bond Orbital (NBO). The electronic structures were discussed and the relocation of electronic density was determined. Molecular Electrostatic Potential (MEP), local density functional descriptors, border molecular orbitals and absorption spectrum were studied. Through the local Fukui reactivity indices, the carbon of the carbonyl group (C = O) is the preferential site of the nucleophilic attack and the sulfur atom linked to the trigonal carbon (C = S) is the preferential site of electrophile attack. Analysis of the global descriptors revealed that compound 7c is the most reactive with an energy difference between the frontier orbitals of ΔEgap = 3.305 eV. Furthermore, this compound 7c is the less stable, the softest and has the greatest electronic exchange capacity of all studied compounds. The intramolecular electronic transitions which stabilize these compounds are LP → π * for 7a and 7d and σ → σ * for 7b, 7c and 7e. The rhodanine derivatives are more reactive and more soluble in polar solvents.

Full Text:




M. Negwer, Organic-chemical drugs and their synonym:(an international survey), 1994.

S. Higashi, H. Akiyama, A. Furuta, M. Takanashi, Y. Li, N. Hattori, Y. Mitsuyama, H. Arai, R. Hanzawa, N. Shibata, Publications from Juntendo University Graduate School of Medicine 2016[2/6], Neurol Sci, 2016, 367,


E. Zeiger, B. Anderson, S. Haworth, T. Lawlor, K. Mortelmans, W. Speck, Salmonella mutagenicity tests: Results from the testing of 255 chemicals, Environmental Mutagenesis, 1987, 9 (S9 S9), 61–109.

A. Anjaneyulu, V. D. Shukla, G.M. Rao, S. K. Singh, Experimental host range of rice tungro virus and its vectors, Plant Disease, 1982, 66 (1), 54–56.

M. Gualtieri, L. Bastide, P. Villain-Guillot, S. Michaux-Charachon, J. Latouche, J.-P. Leonetti, In vitro activity of a new antibacterial rhodanine derivative against Staphylococcus epidermidis biofilms, Journal of Antimicrobial Chemotherapy, 2006, 58 (4), 778–783.

Y. Ohishi, T. Mukai, M. Nagahara, M. Yajima, N. Kajikawa, K. Miyahara, T. Takano, Preparations of 5-alkylmethylidene-3-carboxymethylrhodanine derivatives and their aldose reductase inhibitory activity, Chemical and pharmaceutical bulletin, 1990, 38 (7), 1911–1919.

L. R. Domingo, P. Pérez, Global and local reactivity indices for electrophilic/nucleophilic free radicals, Organic & biomolecular chemistry, 2013, 11 (26), 4350–4358.

S. Pal, R. Roy, A. K. Chandra, Change of hardness and chemical potential in chemical binding, The Journal of Physical Chemistry, 1994, 98 (9), 2314–2317.

W. K. Coulibaly, L. Paquin, A. BÚnie, Y.A. BÚkro, R. Le GuÚvel, M. Ravache, A. Corlu, J. P. Bazureau, Prospective study directed to the synthesis of unsymmetrical linked bis-5-arylidene rhodanine derivatives via “one-pot two steps” reactions under microwave irradiation with their antitumor activity, Medicinal Chemistry Research, 2015, 24 (4), 1653–1661.

C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B, 1988, 37 (2), 785.

K. V. Bohoussou, A. Benié, M. G.-R. Koné, A. B. Kakou, K. Bamba, N. Ziao, Theoretical Study of the Reaction of (2, 2)-Dichloro (Ethyl) Arylphosphine with Bis (2, 2)-Dichloro (Ethyl) Arylphosphine by Hydrophosphination Regioselective by the DFT Method, Computational Chemistry, 2017, 5 (03), 113-128.

A. L. Bédé, A. B. Assoma, K. D. Yapo, M. G.R. Koné, S. Koné, M. Koné, B. R. N’Guessan, E.H. S. Bamba, Theoretical Study by Density Functional Theory Method (DFT) of Stability, Tautomerism, Reactivity and Prediction of Acidity of Quinolein-4-One Derivatives, Computational Chemistry, 2018, 6 (03), 57-70.

A. Ignaczak, J. N. F. Gomes, Interaction of halide ions with copper, Chemical physics letters, 1996, 257 (5-6), 609–615.

M. Lashkari, M. R. Arshadi, DFT studies of pyridine corrosion inhibitors in an electrical double layer, Chemical physics, 2004, 299 (1), 131–137.

M. Frisch, G. W. Trucks, H. B. Schlegel, G.E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, revision a. 02, gaussian, Inc., Wallingford, CT, 2009, 200.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G.E. Scuseria, M. A. Robb, Cheeseman, JR, J. A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, Revision B. Gaussian, Inc., Pittsburgh PA, 2003.

W. Malcolm, J. Chase, JANAF thermochemical table, J. Phys. Chem. Ref. Data, 1985, 14, Supplement No. 1.

T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms, Physica, 1934, 1 (1-6), 104–113.

D. A. Lerner, C. Balaceanu-Stolnici, J. Weinberg, L. Patron, Computational Study of the Molecular Complexes between 5-HTP with ATP and DHEA. Potential New Drug Resulting from This Complexation, Computational Chemistry, 2015, 3, 18–22.

K. Fukui, T. Yonezawa, H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons, The Journal of Chemical Physics, 1952, 20 (4), 722–725.

N. Khalil, Quantum chemical approach of corrosion inhibition, Electrochimica Acta, 2003, 48 (18), 2635–2640.

C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B, 1988, 37 (2), 785.

P. K. Chattaraj, U. Sarkar, D. R. Roy, Electrophilicity index, Chemical reviews, 2006, 106 (6), 2065–2091.

A. U. Orozco-Valencia, J. L. Gázquez, A. Vela, Global and local partitioning of the charge transferred in the Parr–Pearson model, The Journal of Physical Chemistry A, 2017, 121 (20), 4019–4029.

R. K. Roy, S. Pal, K. Hirao, On non-negativity of Fukui function indices, The Journal of Chemical Physics, 1999, 110 (17), 8236–8245.

J. P. Foster, J. P Foster, F. Weinhold, Natural hybrid orbitals, J. Am. Chem. Soc, 1980, 102, 7211-7218.

F. Weinhold, C. R. Landis, Natural bond orbitals and extensions of localized bonding concepts, Chemistry Education Research and Practice, 2001, 2 (2), 91–104.

S. K. Pathak, R. Srivastava, A. K. Sachan, O. Prasad, L. Sinha, Am Asiri, M. Karabacak, Experimental (FT-IR, FT-Raman, UV and NMR) and quantum chemical studies on molecular structure, spectroscopic analysis, NLO, NBO and reactivity descriptors of 3, 5-Difluoroaniline, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 283–295.

K. A. R. Kouassi, A. Benié, M. G.-R. Koné, W. K. Coulibaly, K. V. Bohoussou, A. Ganiyou, Predictive Modeling of the Human Hepatoma (Huh-7D12) Cancer Line of a Series of bis-(5-arylidene-rhodanine-3-yl) Diamine, Asian Journal of Chemical Sciences, 2019, 1–11.

W. K. Coulibaly, J. S. N’dri, M. G.-R. Koné, C. D. Dago, C. N.t. Ambeu, J.-P. Bazureau, N. Ziao, Studies of the Chemical Reactivity of a Series of Rhodanine Derivatives by Approaches to Quantum Chemistry, Computational Molecular Bioscience, 2019, 9 (03), 49.

D. Soro, L. Ekou, M. G.R. Koné, T. Ekou, N. Ziao, DFT Study of Molecular Stability and Reactivity on Some Hydroxamic Acids, European Journal of Engineering Research and Science, 2019, 4 (2), 45–49.

Z. Demircioğlu, Ç. Albayrak, O. Büyükgüngör, Theoretical and experimental investigation of (E)-2-([3, 4-dimethylphenyl) imino] methyl)-3-methoxyphenol, Journal of Molecular Structure, 2014, 1065, 210–222.

H. Gökce, S. Bahçeli, Analysis of molecular structure, spectroscopic properties (FT-IR, micro-

calculations of free and ligand 2-thiophene-glyoxylic acid in metal halides (Cd, Co, Cu, Ni and Zn), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 116, 242–250.

F. J. Luque, J. M. López, M. Orozco, Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”, Theoretical Chemistry Accounts, 2000, 103 (3-4), 343–345.

S. Sebastian, N. Sundaraganesan, The spectroscopic (FT-IR, FT-IR gas phase,

FT-Raman and UV) and NBO analysis of

-Hydroxypiperidine by density functional method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 75 (3),




  • There are currently no refbacks.

Copyright (c) 2020 Mediterranean Journal of Chemistry