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Abstract: A quantitative structure-activity relationship (QSAR) investigation was performed towards 41 hybrids 

of 4-anilinoquinoline-triazines as potential antimalarial agents. The study was carried out using descendant 

multiple linear regression analyses (MLR), and artificial neural networks (ANN). Quantum chemical descriptors 

were calculated using DFT-B3LYP method, with the basis set 6-31G. The values obtained for the correlation 

coefficient of 0.87 and 0.92 by MLR and ANN, respectively, show a good predictive quality of the established 

model. In addition, the predicted model has been confirmed by several validation methods such as leave-one-out 

(LOO) cross-validation, Y-randomization, and external validation. The observed activity and the structural 

features of the studied molecules were further highlighted by molecular docking study on both wild and quadruple 

mutant type of pf-DHFR protein. Furthermore, the present work deals to study the binding modes and the key 

protein-ligand interactions. This methodology will be used to design new antimalarial drugs. 
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Introduction 

 

Despite the scientific advances made in medicinal 

chemistry. Nowadays, the malaria disease continues 

to cause the death of huge numbers of human beings. 

According to the World malaria report, 2018 draws on 

data from 90 countries and areas, there were an 

estimated 219 million cases and 435 000 related 

deaths in 2017 1,2. Malaria is caused by protozoa of 

the genus Plasmodium 3. In fact, we can distinguish 

five species that infect humans, P. falciparum, P. 

vivax, P. malariae, P. ovale, and P. Knowlesi 4. 

Among all five species, Plasmodium falciparum is the 

most severe and deadly type 5. For this reason, the 

development of new drugs able to fight malaria is still 

in great interest. Indeed, 1,3,5-triazine derivatives as 

cycloguanil, chlorcycloguanil, clociguanil, WR99210 

are already approved as effective dihydrofolate 

reductase (DHFR) inhibitors. They inhibit selectively 

the biochemical processes that are vital for parasite 

growth 6. However, the development of the resistance 

to antimalarial drugs such as chloroquine, 

amodioquine, artemisinin, and antifolates becomes a 

serious health concern 7. To overcome this problem, 

the concept of hybrid molecules has been introduced 

as one of the most used solutions, in which two or 

more pharmacophores are linked together and act by 

inhibiting simultaneously two conventional targets 8. 

Herein, we report the molecular modeling of  

 4-anilinoquinoline-triazine derivatives 9. In order to 

pursue, our ongoing research on molecular modeling 

of antimalarial activity 10. We aim in this study to 

develop a predictive QSAR model, which will be used 

to analyze the antimalarial activity of a series of 41 

hybrid 4-anilinoquinoline-triazine derivatives               

(Table 1). The proposed quantitative models are 

relying on the multivariate statistical analysis of 

experimental results published previously 11. The 

MLR and ANN methods have served to establish a 

predictive model of antimalarial activity. Moreover, 

internal and external validations, as well as                               

Y-randomization methods, were used to test the 

reliability of the built model. Besides, molecular 

docking is used to analyze the interactions of the 

hybrid systems with the active sites on the protein. 

Thus, we performed the docking of two isomers meta 

11 and para 38 against Plasmodium Falciparum 

Dihydrofolate Reductase (Pf-DHFR) through its two 

forms wild type and quadruple mutant 12.  

 

Materials and Methods. 
 

Experimental Data 

The experimental data of 4-anilinoquinoline-

triazine derivatives are collected from previously 

reported work 9, and are listed in Table 1. A total of 

41 derivatives of 4-anilinoquinoline-triazine were 

studied toward a correlation between the antimalarial 
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activity and structure of the target molecules. The 

observed activity (IC50 (nM)) was converted into 

logarithm scale logIC50 (Table 1). The studied set was 

divided into two groups enumerated from 1 to 33 and 

from 34 to 41, where the triazine frameworks are 

linked to the 4-anilinoquinoline moiety via nitrogen 

atom in para and meta position, respectively. The 

general structure of the 4-anilinoquinoline-triazine 

hybrids is represented in Figure1.  

 
Figure 1. The structures of para and meta 4-anilinoquinoline-triazine derivatives.  

 

Table 1. The observed activity logIC50 of studied compounds. 

Compounds R1 R2 
LogIC50 

(obs) 

1 piperidino N-methylpiperazino 1.541 

2 piperidino N-ethylpiperazino 1.473 

3 piperidino N.N-diethylethylenediamino 1.588 

4 piperidino 4-(3-aminopropyl)morpholino 1.364 

5 piperidino Cyclohexylamino 2.495 

6 piperidino Benzylamino 2.370 

7 anilino N-methylpiperazino 0.767 

8 anilino N-ethylpiperazino 0.772 

9 anilino n-butylamino 1.267 

10 anilino N.N-diethylethylenediamino 1.781 

11 anilino 4-(3-aminopropyl)morpholino 0.478 

12 anilino Cyclohexylamino 1.811 

13 anilino Benzylamino 1.526 

14 anilino Amino 1.618 

15 anilino Methylamino 1.279 

16 o-toluidino N-methylpiperazino 1.275 

17 o-toluidino N-ethylpiperazino 2.010 

18 o-toluidino n-butylamino 1.498 

19 o-toluidino N.N-diethylethylenediamino 1.415 

20 o-toluidino 4-(3-aminopropyl)morpholino 1.127 

21 o-toluidino Cyclohexylamino 2.212 

22 o-toluidino Benzylamino 1.443 

23 o-toluidino Amino 1.472 

24 o-toluidino Methylamino 1.575 

25 p-toluidino N-methylpiperazino 1.094 

26 p-toluidino N-ethylpiperazino 1.075 

27 p-toluidino N-butylamino 1.648 

28 p-toluidino N.N-diethylethylenediamino 1.918 

29 p-toluidino 4-(3-aminopropyl)morpholino 0.846 

30 p-toluidino Cyclohexylamino 1.868 

31 p-toluidino Benzylamino 1.802 

32 p-toluidino Amino 1.071 

33 p-toluidino Methylamino 0.806 

34 anilino N-methylpiperazino 1.673 

35 anilino N-ethylpiperazino 1.778 

36 anilino n-butylamino 1.4197 

37 anilino N.N-diethylethylenediamino 2.464 

38 anilino 4-(3-aminopropyl)morpholino 2.044 

39 p-toluidino N-methylpiperazino 1.635 

40 p-toluidino N-ethylpiperazino 1.612 

41 p-toluidino 4-(3-aminopropyl)morpholino 1.538 
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Molecular descriptors calculation 

In this work, DFT was used to optimize the 

structure of all the studied compounds. Electronic 

descriptorswere calculated from the DFT optimized 

structures for each molecule 13 using Becke’s three-

parameter hybrid functional (B3LYP) 14, with a 6-31G 

basis set. All calculations were performed by 

Gaussian 03 quantum chemistry package 15. The 

topological, constitutional, lipophilic and steric 

descriptors were computed with ACD/ChemSketch 16 

and Chembiodraw 17 softwares. All descriptors used in 

this work are summarized in Table 2.  

 

Table 2. Descriptors forming the database. 

Category 

of  

descriptors 

Electronic Lipophilic Topological 
Constitutiona

l 
Steric 

Name of    

the 

descriptor 

 

HOMO energy  

(EHOMO) 

LUMO energy  

(ELUMO) 

Dipole 

moment     

(Dp) 

 

 

LogP 

(Octanol-

water 

partition 

coefficient) 

 

Balaban Index 

 (blndx) 

Molecular 

Topological Index 

(Mtdx) 

Sum Of Degrees  

(Sde) 

Sum Of Valence 

Degrees (Svde) 

Wiener Index  

(Windx) 

Molecular 

weight 

(MW) 

Ovality (O) 

Density (D) 

D =
MW

MV
 

Surface of 

tension (ST) 

Reactivity 

index (Rdx) 

Molar 

refractivity 

(MR) 

 

Methods 

Multiple Linear Regression 

The multiple linear regression (MLR) analysis 

with descendent selection has been used to study the 

relationship between one dependent variable 

(biological activity) and several independent variables 

(molecular descriptors). The independent variables 

were individually added or deleted from the model at 

each step of the regression based on three criteria: 

Determination coefficient R2, Fisher ratio value (F) 

and the Root Mean Squared Error (RMSE). This 

procedure is a mathematic technique that minimizes 

the differences between observed and predicted 

values. The MLR model related to antimalarial 

activity is generated using the software xlstat 18. It has 

served also to select the descriptors used as the input 

parameters for the artificial neural network (ANN).  

 

Artificial Neural Networks  

Artificial neural networks are artificial systems 

that simulate the learning process of neurons in the 

human brain. The ANN analysis is performed using 

Matlab software 19. In this, the neurons are arranged 

in layers: the input layer, hidden layer, and output 

layer. Neurons in the same layer are not connected 

together. In this work, the input layer contains six 

neurons representing the relevant descriptors obtained 

with MLR techniques. The output layer represents the 

calculated activities values logIC50. The hidden layer 

has been determined by ρ = (number of compounds) / 

(number of connections). In our case, it is 

recommended to take into account the ρ interval             

1 < ρ < 3 20-21. Hence, with 32 compounds and 6 

descriptors, the ρ value is 1.88 when the hidden layer 

is composed of two neurons 22. As a result, the final 

ANN architecture is (6-2-1). 

 

Cross-validation 

The cross-validation method has been performed 

by the Leave-One-Out (LOO) procedure 23,24, which 

removes successively one molecule from a training 

set containing 32 molecules. Then it was repeated 32 

times, in order to predict the properties of all 

molecules. The outcome from such a test is the LOO 

cross-validation correlation coefficient 𝑄𝑐𝑣
2 , which is 

calculated according to equation 1 (eq. 1). The high 

average of 𝑄𝑐𝑣
2 was used by several authors as an 

indicator of robustness and predictive ability of a 

model 25. 

𝑄𝑐𝑣
2  = 1- 

∑ (𝑌𝑒𝑥𝑝−𝑌𝑝𝑟𝑒𝑑)2𝑛
𝑖=1

∑ (𝑌𝑒𝑥𝑝−𝑌)2𝑛
𝑖=1

          Eq. 1 

Where Yexp, Ypred and Y are, respectively, the 

measured, predicted and the averaged values for the 

dependent variables.

 

 

Y-randomization test 

This test has been used to ensure the robustness 

of the built QSAR model. In this test, validation is 

performed by permuting the response parameters (Y) 

with respect to the (X) matrix which has been kept 

unchanged 26. The Y-randomization test ensures that 

the correlation coefficient of the obtained model is not 

found by chance. For an acceptable QSAR model, the 

average correlation coefficient (Rr) of randomized 

models should be less than the correlation coefficient 

(R) of nonrandomized model 27. The basis for this 

method is to test the validity of the original QSAR 

model and to ensure that the selected descriptors are 

appropriate. 

 

External validation 

Validation strategies are recognized as one the 

most methods, which implies a quantitative 

assessment of QSAR model robustness, predictive 
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power and application domain based on new data. 

According to Golbraikh and Tropsha study on 

validation methods, internal validation is not a good 

parameter to estimate the capability of QSAR models 
25. However, external validation has used to estimate 

the performance accuracy of the QSAR on the test set 

that determines the true predictive power of a QSAR 

model. The predictive power of the built QSAR was 

estimated by an external 𝑄𝑒𝑥𝑡
2 defined as follows     

(eq.2) 25: 

𝑄𝑒𝑥𝑡
2 = 1- 

∑ (𝑌exp (𝑡𝑒𝑠𝑡)−𝑌(𝑡𝑒𝑠𝑡))2𝑛
𝑖=1

∑ (𝑌𝑡𝑒𝑠𝑡− 𝑌̅𝑡𝑟)2𝑛
𝑖=1

               Eq. 2 

Where 𝑌𝑒𝑥𝑝(𝑡𝑒𝑠𝑡) and 𝑌(𝑡𝑒𝑠𝑡) are, respectively, the 

measured and the predicted values of the dependent 

variable test set) and 𝑌̅𝑡𝑟is the average value for the 

dependent variable for the training set. 

𝑄𝑒𝑥𝑡 
2 is an important indicator of the reliability of 

the proposed model. For this purpose, it must be 

greater than 0.5. Golbraikh and Tropsha also 

proposed several other parameters for analyzing the 

external predictive ability of the developed QSAR 

model which must be respected 25. 

 

Molecular Docking  

Molecular docking became an essential tool in 

drug discovery, recently. Because, of its ability to 

predict the conformation and the bonding mode of the 

ligand within the target binding site. This study was 

performed toward dihydrofolate reductases                         

(pf-DHFR) protein, which is the main target of the 

developing of antimalarial drugs. The crystal 

structures of two types of pf-DHFR wild type (coded 

as 1J3I.pdb) and quadruple mutant (coded as 

1J3K.pdb) were obtained from the Protein Data Bank 

RCSB 28. Both of them contain the third-generation                          

Pf-DHFR inhibitor WR99210 bounded to the active 

site in the presence of NADPH 11. The minimized 

protein structures were defined as receptor, 

consequently, the first step in the preparation of the 

receptor uses the Discovery Studio software for 

removal of all waters and ligands as well as other non-

protein, binding site was defined as volume occupied 

by the ligand in the receptor, and an input site sphere 

was defined over the binding site with a radius of 5 Å 
29,30. In this work, molecular docking was performed 

to compounds 11 and 38 toward 1J3I.pdb and 

1J3K.pdb protein using AutoDock 4.2 software 31. 

The analysis of the interactions between the ligands 

and the receptor was performed by the AutoDock 4.2 

software 31. The 3D grid was created by the 

AUTOGRID algorithm 32. The grid maps were 

constructed using 60, 60, 60, pointing in x, y and z 

directions, with grid point spacing of 0.375 Å. The 

coordinates of the grid box center were set to 28.09 Å, 

5.76 Å, 52.59 Å, by the ligand location in the 

complex. 

 

Results and Discussion  

 

The present paper has devoted to the QSAR and 

molecular docking studies of 4-anilinoquinoline-

triazine derivatives, which have shown a significant 

antimalarial activity. The experimental activity has 

collected from literature 9. The dataset was randomly 

divided into two sets: The training set which contains 

32 compounds and the test set contain with 9 

compounds. The selected descriptors and the 

predicted activity values using the training set 

obtained by MLR and ANN methods are represented 

in Table 3. 

 

Table 3. Values of the selected descriptors and the observed/predicted logIC50 values. 

N EHOMO ELUMO D MR blndx Svde LogIC50(obs) RLM ANN 

1 -5.241 -1.455 1.338 155.107 2438365 125 1.541 1.395 1.610 

3 -5.215 -1.439 1.294 162.337 3252644 125 1.588 1.863 1.587 

4 -5.237 -1.46 1.335 166.781 3665731 135 1.364 1.224 1.406 

5 -5.218 -1.447 1.34 155.835 2466903 123 2.495 2.421 2.430 

6 -5.277 -1.487 1.366 159.434 2820083 131 2.37 1.837 2.247 

7 -5.341 -1.526 1.38 157.023 2778844 133 0.767 1.003 0.843 

9 -5.351 -1.552 1.36 150.611 2559675 125 1.267 1.282 1.284 

10 -5.326 -1.537 1.332 164.253 3687134 133 1.781 1.610 1.599 

11 -5.346 -1.538 1.374 168.697 4119305 143 0.478 0.701 0.419 

13 -5.379 -1.567 1.409 161.351 3196796 139 1.526 1.575 1.591 

14 -5.376 -1.553 1.473 131.245 1528082 117 1.618 1.375 1.652 

15 -5.338 -1.532 1.438 136.738 1735996 119 1.279 1.244 1.275 

16 -5.328 -1.534 1.359 162.064 3097437 135 1.275 1.405 1.253 

18 -5.316 -1.531 1.34 155.653 2873094 127 1.498 1.389 1.578 

19 -5.324 -1.528 1.314 169.294 4094456 135 1.415 1.739 1.705 

20 -5.332 -1.541 1.355 173.738 4543619 145 1.127 1.014 1.158 
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21 -5.309 -1.523 1.361 162.793 3131051 133 2.212 2.365 2.129 

23 -5.37 -1.559 1.442 136.286 1746777 119 1.472 1.458 1.327 

25 -5.323 -1.511 1.359 162.064 3129875 135 1.094 1.059 1.017 

26 -5.318 -1.51 1.336 166.812 3513906 137 1.075 1.058 1.121 

27 -5.333 -1.54 1.34 155.653 2904599 127 1.648 1.422 1.527 

28 -5.306 -1.516 1.314 169.294 4134633 135 1.918 1.608 1.765 

29 -5.314 -1.529 1.355 173.738 4584594 145 0.846 0.882 0.883 

30 -5.293 -1.51 1.361 162.793 3163523 133 1.868 2.216 2.011 

31 -5.355 -1.559 1.387 166.382 3584488 141 1.802 1.693 1.743 

33 -5.304 -1.524 1.411 141.779 1998964 121 0.806 1.343 0.939 

34 -5.588 -1.637 1.38 157.023 2657230 133 1.673 1.655 1.721 

35 -5.584 -1.634 1.355 161.771 2997968 135 1.778 1.588 1.717 

36 -5.61 -1.638 1.36 150.611 2445964 125 1.419 1.503 1.439 

38 -5.443 -1.643 1.374 168.697 3959243 143 2.044 1.963 2.063 

39 -5.57 -1.622 1.359 162.064 2996271 135 1.635 1.721 1.631 

40 -5.566 -1.618 1.336 166.812 3367587 137 1.612 1.681 1.622 

 

Multiple Linear Regression (MLR)  The training set was used to build a QSAR model 

using MLR method. The obtained QSAR model is 

represented by the following equation 3: 

LogIC50= -54.5+ 4.4* EHOMO– 14.9* ELUMO + 34*D + 0.38*MR - 8.2E-7*Blndx - 0.36* Svde    Eq3 

N = 32      R = 0.88          R2 = 0.78       F = 14.69          RMSE = 0.23 

Where N is the number of compounds, R is the 

correlation coefficient, R2 is the determination 

coefficient, RMSE is the root mean square error, F is 

the Fisher F-statistic. The relevant descriptors 

involved in the MLR model of the training set are 

HOMO energy (EHOMO), LUMO energy (ELUMO), 

Density (D), Molar refractivity (MR), Sum of Valence 

Degrees (Svde) and Balaban Index (blndx). The 

corresponding normalized descriptors coefficients 

and the correlation of the observed activity obtained 

by the MLR method are presented, respectively, in 

Figure 2 and Figure 3. 

 

 
 

Figure 2. Modeling characterization by the normalized coefficients. 

 

EHOMO

ELUMO

D

MR

blndx

Svde
-10

-5

0

5

10

15

St
an

d
ar

d
iz

e
d

 c
o

e
ff

ic
ie

n
ts

Variable



Mediterr.J.Chem., 2019, 8(2)      H. Hadni et al.                 89 

 

 

 

Figure 3. Correlation between observed and predicted activities calculated using MLR model. 

 

The correlation between the experimental and 

calculated activities based on MLR model for a series 

of 32 compounds was quite significant, as indicated 

by the statistical values (R=0.88), and the RMSE 

value (0.23). The value obtained for RMSE showed 

that the model has a good prediction precision.  

 

 

 

 

Artificial Neural networks (ANN) 

In order to increase the probability of good 

characterization of studied compounds, artificial 

neural networks (ANN) has used as a non-linear 

method to generate a predictive non-linear model 

between the set of molecular descriptors selected by 

MLR method and the observed activity. The 

correlation between the observed and the predicted 

activities using the ANN method is illustrated in 

Figure 4. 

 

Figure 4. The correlation between observed and predicted activities using the ANN method. 
 

Figure 4 shows a good correlation between 

observed and predicted (ANN) activities. Thus, this 

model has a significant statistical quality and an 

excellent prediction ability (R=0.97, R2=0.95 and 

RMSE=0.09). 

 

 

 

Cross-validation (CV) 

In this study, we have used to validate our model 

through “leave-one-out” (LOO) cross-validation. The 

outcomes achieved (𝑄𝑐𝑣=0.95, 𝑄𝑐𝑣
2 =0.91 and               

RMSE= 0.12) reveals the robustness and the 

predictive ability of the built QSAR model. Further 

tests have used to ensure the applicability of this 

obtained model. 
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Y-randomization 

This technique was widely used to ensure the 

robustness of a QSAR model. The results of the 

QSAR model obtained in the Y-randomization test 

(Table 4) showed relatively a less average correlation 

coefficient (𝑅𝑟
2 = 0.69) than obtained by the 

nonrandomized model (R2 = 0.78). Furthermore, this 

result implies that the obtained QSAR model is robust 

and has a good predictive ability. 

 

Table 4. Comparison between observed and predicted activities obtained using Y-randomization method. 

N 5 9 13 17 22 25 29 35 41 15 18 24 26 30 32 37 

log IC50 2.495 1.267 1.526 2.010 1.443 1.094 0.846 1.778 1.538 1.279 1.498 1.575 1.075 1.868 1.071 2.464 

pred logIC50 2.500 1.078 1.443 1.275 1.498 1.279 1.007 1.616 1.313 1.337 1.211 1.325 1.247 2.082 1.335 2.449 

N 34 39 11 14 16 20 28 31 36 1 4 6 19 2 12 8 

log IC50 1.673 1.635 0.478 1.618 1.275 1.127 1.918 1.802 1.419 1.541 1.364 2.370 1.415 1.473 1.811 0.772 

pred logIC50 1.684 1.804 0.922 1.465 1.301 1.061 1.585 1.491 1.621 1.680 1.572 1.944 1.639 1.675 1.992 1.087 

 

External Validation  

The external validation has used in order to 

estimate the true predictive power of the proposed 

QSAR model. For this reason, nine compounds have 

been randomly removed from the original set. Thus, 

the model has been built with 32 compounds through 

MLR and ANN methods. Then, we have tested the 

applicability of the built model on the nine 

compounds (Table 5). In addition, Golbraikh and 

Tropsha have proposed a set of parameters for 

determining the external predictability of QSAR 

model (Table 6) 25. 

 

Table 5. Comparison between experimental and predicted LogIC50 values of an external test set for the MLR 

and ANN model based on descriptors of equations 3. 

N LogIC50 Pred logIC50 (MLR) Residuals Pred logIC50 (ANN) Residuals 

2 1.473 1.542 0.003 1.526 -0.02 

8 0.772 0.963 -0.017 1.029 -0.292 

12 1.811 2.038 0.229 1.986 -0.078 

17 2.010 1.352 -0.615 1.342 0.675 

22 1.443 1.519 0.004 1.518 -0.043 

24 1.575 1.499 -0.121 1.516 0.09 

32 1.071 1.170 -0.049 1.175 -0.119 

37 2.464 2.542 0.213 2.533 0.101 

41 1.538 1.944 0.353 1.939 -0.312 

 
Table 6. Golbraikh and Tropsha’s criteria. 

Parameter Formula Threshold Modelscore 

 

𝑄𝑒𝑥𝑡
2  
 

𝑄𝑒𝑥𝑡
2 = 1- 

∑ (𝑌exp (𝑡𝑒𝑠𝑡)−𝑌(𝑡𝑒𝑠𝑡))2𝑛
𝑖=1

∑ (𝑌𝑡𝑒𝑠𝑡− 𝑌̅𝑡𝑟)2𝑛
𝑖=1

  

 

𝑄𝑒𝑥𝑡
2 >0.5 

 

0.65 

r2 The coefficient of determination for the plot of 

predicted versus observed for the test set 
r2>0.6 0.67 

𝑟0
2

 
 

r2 at zero intercept  0.65 

𝑟0
′2 r2 for the plot of observed versus predicted activity 

for the test set at zero intercept 
 0.61 

|𝑟0
2 − 𝑟0

′2|  |𝑟0
2 − 𝑟0

′2| < 0.3 0.04 

k The slope of the plot of predicted versus observed 

activity for the test set at zero intercept 

0.85<k<1.15 0.96 

𝑟2 − 𝑟0
2

𝑟2
 

 𝑟2 − 𝑟0
2

𝑟2
< 0.1 

0.03 

k’ The slope of the plot of observed versus predicted 

activity at zero intercept 

0.85<k’<1.15 1.01 

𝑟2 − 𝑟0
′2

𝑟2
 

 𝑟2 − 𝑟0
′2

𝑟2
< 0.1 

0.09 
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Based on the results obtained by the external 

validation method using an external test set (Table 5). 

We can conclude that the established model has a very 

good predictive power. According to Golbraikh and 

Tropsha, all conditions listed in Table 6 are satisfied. 

Then, the established model is considered as 

satisfactory QSAR model. The most important result 

of this investigation is that in vitro antimalarial 

activity of this series could be predicted using QSAR 

methods. 

 

Wild type of pf-DHFR 

Compound 11                                                                       Compound 38 

 
 

 

Quadruple mutant pf-DHFR-TS 

Compound 11                                                                Compound 38 

 
 

Figure 5. Binding interaction from docking simulation of 11 and 38 compounds into the active site of wild type 

and a quadruple mutant of pf-DHFR. 

 

Docking studies 

Molecular docking study was performed toward 

Plasmodium Falciparum dihydrofolate reductases                               

(Pf-DHFR) protein, an essential substrate in the 

biosynthesis of folate and it has been the main target 

of the developing of antimalarial drugs. In an attempt 

to understand the high antimalarial activity potency 

manifested with certain compounds and the lack of 

activity observed with others. We have decided to 

perform molecular docking with the binding sites of 

both wild type and a quadruple mutant of Pf-DHFR 

for the highest active compound (compound11) and 

the lowest active compound (compound 38). The two 

compounds have the same radicals R1 and R2 but 

belong to different structural categories as it is 

detailed in paragraph 2.1. The reported study by 

Yuvanyama et al 33,10 has found the binding modes 

and has localized the active sites on both wild and 

mutant type of protein (Pf-DHFR). The study 

performed with a potent inhibitor 1,3,5-triazine 

derivative which is a preclinical molecule called 
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WR99210. It is found that the important sites in the 

case of the wild type are located in ILE14, ALA16, 

MET55, ASP54, SER108, ILE164 and TYR170. It 

was also found that important sites are located in 

ALA16, CYS50, ASN51, CYS59, ASN108, LEU164 

and TYR170 in the case of the wild type. The 

interactions obtained for the two compounds are 

illustrated in Figure 5. 
 

The molecular docking of compound 11 toward 

wild type shows three hydrogen bond between the 

three nitrogen atoms linked to the triazine moiety and 

the following amino acids SER111, SER108 and 

ILE164 at respectively 2.51 Ǻ, 2.24 Ǻ and 1.84 Ǻ. On 

the other hand, a P-P and a p-sigma interactions are 

observed between a phenyl group of the quinoline 

frameworks and the subsequent amino acids PHE116 

(4.65 Ǻ) and MET55 (3.99 Ǻ). However, compound 

38 forms only two hydrogen bonds with two less 

important binding sites, SER111 and GLY44, which 

are not cited as active sites for antimalarial activity 33. 

In the case of quadruple mutant, compound 11 forms 

three hydrogen bond with ASN108, SER111, and 

LYS49 as well as two interactions P-sigma 

throughout two phenyl groups. This belongs to two 

anilines attached, respectively, to the anilinoquinoline 

moiety and the triazine moiety. Further, compound 38 

forms only one hydrogen bond and one P-sigma 

interaction with LEU146 and LEU46. 
 

In the analysis of these results we have observed 

that the residues with that the compound 11 has 

undertaken its interactions present the most important 

binding sites for antimalarial activity referring with an 

antecedent study on the antimalarial protein 

characterization 33, which might be the plausible 

reason for observing differences in the activity of wild 

and mutant strains. So, as compounds 11 and 38 are 

two position isomers (meta and para) we can note how 

the position of radicals could make changes in 

activities potency through the changes of interactions 

with receptor. Further we noticed that the 3D 

visualization of compound 11–protein complex                

(wild type) (Figure 6) showed that the plans of phenyl 

rings that form the P-P interaction (at a distance of 

4.65 Ǻ) are almost parallel, which is considered in a 

previous study 34 as a strong interaction. 

 
Figure 6. 3D visualization of compound 11-protein complex (wild type) 

 

Conclusion 

 

The present work shows how antimalarial 

activities of 41 hybrids 4-anilinoquinoline-triazines 

may be treated statistically to uncover the molecular 

characteristics which are essential for high activity. 

The generated models were analyzed and validated 

for their statistical significance and external 

prediction power. The QSAR analysis revealed a set 

of important descriptors which influence the activity: 

HOMO energy, LUMO energy, Density, Sum of 

Valence Degrees and Balaban Index. The molecular 

docking studies performed with compounds 11 (para-

isomer) and 38 (meta-isomer) shows that the most 

active compound 11 forms important interactions with 

the active sites as it was found with known inhibitors 

(WR99210) of the wild-type and quadruple mutant 

forms of Pf-DHFR. Therefore, the docked poses 

provide details of the predicted binding modes and the 

key molecular interactions, which might provide 

opportunities for medicinal chemists to develop new 

antimalarial drugs. 
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