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Abstract:  Different artificial neural networks architectures were developed to predict the density, viscosity and 

refractive index of binary and ternary mixtures of ionic liquids using their individual properties.  All neural 

network implemented were evaluated using the root mean square error (RMSE) and the average percentage 

deviations (APD) for the training and validation phase.  The individual models implemented show great values 

of R
2
 (greater than 9.995∙10-01) and low errors in terms of RMSE, that corresponds with an APD less than 

7.766∙10-02 %, with the exception of the model for the prediction of viscosity where the error raised to 3.338 %. 

The results show that the different individual artificial neural networks implemented are a useful tool to predict 

the density, viscosity and refractive index of binary and ternary mixtures of ionic liquids and with reasonably 

accuracy. 
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Introduction 

 

Ionic liquid 

Ionic liquids (ILs) are similar to molten salts with a wide melting temperature
1,2

.  Ionic 

liquids are good solvents for polar, nonpolar, organic and inorganic compounds
2
.  They are 

nearly non-volatile, non-flammable and, thermally/electrically stable
3,4

.  Because of their 

interesting properties ionic liquids are gaining popularity as an alternative to traditional 

volatile organic solvents (VOCs)
1,3,5

 and they are often called green solvents
1
.  Therefore they 

are involved in many investigations in different areas such as chemistry and biotechnology
3
. 

Research on their chemical, physical and thermodynamic properties becomes necessary in 

order to select the most suitable ionic liquid for a particular application
5,6

. 

In most cases, ionic liquids are composed of an organic cation and an inorganic, 

polyatomic inorganic anion
7
.  Doing simple changes in the cation and anion combinations or 

by modifying the chemical structures of the constituent ions, it is possible to develop a huge 

number or new ionic liquid
3,6,7

, for this reason ionic liquids are called designer solvents
5
.  

This feature allows to synthesize new ionic liquids to provide a desired density, viscosity, 

melting point, etc., in order to suit the requirements of a particular process or specific 

applications
8,9

, we could say that is a simple process
10

 but given the large number of potential 
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new ionic liquids that could be generated, their physicochemical characterization could be 

complicated because measurements and experiments are not always cheap and easy
10

, it is 

necessary therefore, the application of predictive models, as presented in this paper, to 

estimate the properties of different ionic liquids are important to minimize costs, reagents and 

labour. 

 

Artificial neural network 

During the last three decades, Artificial Neural Networks (ANNs) have been widely 

applied
11

.  The first studies about ANNs started in 1940, but their applications were limited 

until 1980
12

.  ANNs has been used in poorly described complex systems, problems with noise 

or when the input is ambiguous
13

.  In recent years researchers has shown that ANNs are good 

predictive models for engineering problems with a huge number of interaction variables
14

 or 

to mainly nonlinearity problems
15

.  There are advantages of this neuronal model compared 

with other methods based on empirical equation of state or atomistic approaches using 

molecular dynamics or Monte Carlo.  One advantage is the simplicity of the method.  The 

parameters needed to determine the density, viscosity and refractive index of mixtures of 

ionic liquid, are readily available from the supplier of the compounds of the mixture.  Another 

advantage is that neural networks do not need to perform complex calculations using previous 

knowledge of molecular parameters, or the design of any type of empirical equations that 

explain the process. 

 

ANNs are composed of interconnected units, artificial neurons, which are inspired in 

biological neurons.  ANNs are a set of non-linear computational methods
16

, which attempt to 

simulate the processing ability of the human brain
15,17

.  An artificial neural network is formed 

by a different number of neurons grouped into different interconnected layers
17

.  The input 

data are introduced in artificial neural network through the first layer (input layer), these data 

are used as input variables to obtain the predicted value (output values) in the output layer, 

between the input layer and the output layer can be one or more intermediate layers (hidden 

layers)
13,15,17

.  The ANN’s structure, called topology or architecture, is given by the number of 

layers and the number of neurons into each layer, obviously the input neurons corresponds to 

the variables available, the output neurons depend on variables to predict, and intermediate 

neurons should be procured by a trial and error approach
18

.  

In this paper we implemented a feed forward neural networks, where the information is 

transferred from the input layer to the first hidden layer up to the output layer, in other words, 

the input layer distributes the data information to the first intermediate layer, where 

propagation function processed the input data and the activation functions calculated the first 

intermediate layer output, which is transferred to output layer.  Our neural network, a 

Multilayer Perceptron are trained with a back propagation algorithm, gradient descent 

algorithm, that transfers the estimation error back through the network until it reaches an 

acceptable error by modifying weight values through several iterations
11,13-15,17

.  

The use of predictive models based on artificial intelligence are widely used in many fields 

such as; Food Chemistry to optimization of ultrahigh pressure extraction of green tea 

polyphenols
19

, Medicine for automatic electrocardiogram analysis
20

, Engineering to Active 

pulse structural control to control civil engineering structures under dynamic loading
21

, 

Mathematics
22

, Physics to predict maximum temperature cooling in single chips
23

, 

Environmental Sciences for monitoring and diagnosis of a combined heat and power plant
24

, 

Hydrology for flow prediction
25

, Food authenticity
26

, Aerobiology
27

, or in Chemistry to 
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analysis of chromatographic behavior of indinavir and its degradation products
28

, prediction 

of solid solubilities in supercritical carbon dioxide
29

, determining the rejection of neutral 

organic compounds by polyamide nanofiltration and reverse osmosis membranes
30

, predict of 

ethene + oct-1-ene copolymerization ideal conditions
31

, prediction density in ionic liquid
32

, 

conductivity
33

, viscosity
34

 and to estimate the water content
35

. 

The ultimate goal of this paper is to develop a predictive model to determine accurately 

the density, viscosity and refractive index of binary and ternary mixtures of ionic liquids 

using their individual properties, avoiding unnecessary waste of economic resources, reagents 

and labour.  We must emphasize that the aim of this paper is to develop a simple model for 

the determination of the three mentioned properties: density, viscosity and refractive index, 

using data reported for commonly used ionic mixtures.  We could try to develop a model 

where the ionic liquid could be characterized in its basic components and apply it to the 

prediction of the three studied variables.  However, this would increase the complexity of the 

ANN model, and could decrease the predictive power of the ANN due to the increase in 

number of implicit variables. 

 

Material and methods 

 

The first step to develop the different ANN models is to have experimental values (data 

set) of different ionic liquids to allow the ANN generalization from the training cases. 

Because the number of combinations of possible ionic mixtures is very large, the results of 

this work are limited to the modelled ionic liquids and their possible mixtures with organic 

components.  In Table 1 we can see the compounds that can be part in the different mixtures 

collected. 

 

Table 1.  Composition of the different mixtures studied
5,36-45

.  The meaning of abbreviation 

names is explained in the text. 

Comp. 1 Comp. 2 Comp. 3 Ref. Comp. 1 Comp. 2 Comp. 3 Ref. 

Ethyl acetate Ethanol [C4mim][NTF2] 5 Ethanol Water [Bmim][MeSO4] 40 

Ethyl acetate  [C4mim][NTF2] 5 Water  [Bmim][MeSO4] 40 

Ethanol 
 

[C4mim][NTF2] 5 Ethanol 
 

[Bmim][MeSO4] 40 

Ethyl acetate Ethanol [C8mim][NTF2] 36 Ethanol Water [MMIM][MeSO4] 41 

Ethyl acetate  [C8mim][NTF2] 36 Water 
 

[MMIM][MeSO4] 41 

Ethanol 
 

[C8mim][NTF2] 36 Ethanol 
 

[MMIM][MeSO4] 41 

Methyl acetate Methanol [C8mim][NTF2] 37 Ethanol Water [C6mim][Cl] 42 

Methyl acetate  [C8mim][NTF2] 37 Ethanol 
 

[C6mim][Cl] 42 

Methanol 
 

[C8mim][NTF2] 37 Water  [C6mim][Cl] 42 

ETBE Ethanol [emim][EtSO4] 38 Ethanol Water EMISE 43 

Ethanol  [emim][EtSO4] 38 Ethanol Water [C8mim][Cl] 43 

Isopropyl acetate Isopropanol [C8mim][NTF2] 39 Ethanol Water [C4mim][Cl] 44 

Isopropyl acetate 
 

[C8mim][NTF2] 39 1-Propanol Water EMISE 45 

Isopropanol  [C8mim][NTF2] 39 2-Propanol Water EMISE 45 
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Data Set 

We have compiled a database of 1053 experimental binary and ternary mixtures taken 

from the literature
5,36-45

 and their properties were used to implement the different artificial 

neural networks.  The experimental values of density, viscosity and refractive index were 

reported at 298.15 K and at atmospheric pressure
5,36-45

.  The authors of different experiments 

report that all reagents used in the mentioned literature were of the highest purity and supplied 

by Fluka, Merck and Sigma-Aldrich.  The ionic liquids used for the development of neural 

networks are as follows; i) 1-butyl-3-methylimidazolium methylsulphate ([Bmim][MeSO4]), 

ii) 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]), iii) 1-hexyl-3-methylimidazolium 

chloride ([C6mim][Cl]), iv) 1-octyl-3-methylimidazolium chloride ([C8mim][Cl]), v) 1-ethyl-

3-methylimidazolium ethylsulphate ([emim][EtSO4] or EMISE), vi) 1,3-dimethylimidazolium 

methylsulphate ([MMIM][MeSO4]), vii) 1-butyl-3-methyl-imidazolium bis(trifluoromethyl-

sulfonyl)imide ([C4mim][NTF2]) and viii) 1-octyl-3-methyl-imidazolium bis(trifluoromethyl-

sulfonyl)imide ([C8mim][NTF2]).  The mole fraction of the compounds in the mixture varied 

for the different experiments and resulted in different binary and ternary mixtures of one ionic 

liquid.  

All data set have been divided into two groups, the first group for training the different 

artificial neural networks (75% data cases), and the second group (25% data cases) to validate 

the neural networks and the good power accuracy (Table 2).  For viscosity was necessary to 

eliminate some cases with not available output data, likewise, for the training and validation 

phase, viscosity cases greater than 100 mPa·s was eliminated. 

 

Table 2.  Summary of data reported in the literature and used for training and validation 

phases of the different neural networks implemented
5,36-45

. 

 Training Validation 

Density 789 263 

Refractive Index 789 263 

Viscosity 684 227 

 

Mixture chemical descriptor variables 

Descriptor variables are used to differentiate the substances involved and their mixtures. 

The different mixture chemical descriptor variables used as input variables were taken from 

literature
5,36-47

.  The following descriptor variables for the input were selected: i) Mole 

fraction (x1), density of pure compound (ρ1) and Molecular weight (MW1) for the first 

component of the mixture, ii) Mole fraction (x2), density of pure compound (ρ2) and 

Molecular weight (Mw2) for the second component of the mixture, and iii) Mole fraction (x3), 

density of pure compound (ρ3) and Molecular weight (Mw3) for the ionic liquid. A total of             

9 input variables were used for all ANN implemented including individual neural networks 

and neural network with three outputs. The ionic liquid is always identified with the third 

component in the ANN.  The other two components of the ternary solutions are identified 

with the components 1 and 2.  In the case of a binary solution component 2 stays empty in the 

ANN matrix. 
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Artificial neural units 

The basic unit of all ANN is the artificial neuron (Figure 1).  The artificial neuron has 

inputs, denoted as xr, each input has a weight (wsr) that corresponds to the specificity of each 

pair of related neurons, and finally, each neuron has an output, denoted as ys. 

 

Figure 1.  Structure and rules for the neural network in the first intermediate layer. 

 

Artificial neural network rules 

We used a multilayer neural network, as the most commonly used in other studies of our 

research group
48,49

.  In this case we use a neural network with an input layer with nine 

neurons to collect the training data.  This type of neural networks is governed by two different 

functions; i) the propagation function, and ii) the activation function.  The propagation 

function (Equation 1) whose mission is to convey the information between the different 

neurons spreads on different layers of the ANN (Figure 1).  





N

r

srsrS bxwS
1

     (1) 

In this equation N corresponds with the number of neurons in input layer, wsr corresponds 

with the weight (importance that characterizes the union of two neurons) between the          

neuron r (neuron in the input layer) and the neuron s (neuron in intermediate layer), finally,              

bs corresponds the value of the neuron “bias” associated to each the intermediate neuron s. 

The value obtained is used by the activation function (Equation 2), a sigmoidal function, to 

provide an output value for each input entered into the ANN system.  
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The neural network training continues until it reaches the minimum error previously set 

by the system operator.  This error is used to modify the weights between neurons using 

for this purpose the back propagation rule.  This error is calculated according to equation 3, 

where M is the number of neurons in the output layer, dt represents the experimental value 

and yt represents the output value predicted by the ANN. 
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Denotation of neural network implemented 

The notation used for the identification of the neural network is similar to the notation 

used in other our papers
49,50,51

, and it is as follows; 

outputermediateinput NNN  int  

Where Ninput and Noutput represent the neurons number present in the input and output 

layer, respectively. Nintermediate represents neurons number in the intermediate layer. 

  

 

Figure 2.  Artificial neural network (9-5-3) with an input layer with nine neurons, one  

Hidden layer with five neurons and one input layer with three neurons to determinate  

the values  of density, viscosity and refractive index in binary and ternary mixtures 

 

Figure 2 shows an ANN example of this nomenclature with 9 neurons in the input layer, 

corresponds with the input variables (mixture chemical descriptor variables), 5 neurons in the 

intermediate layers, and finally, 3 neurons in the output layer, and corresponds with the values 

of density, viscosity and refractive index that we want to predict. 

 

Software package 

Specialized software is used to develop all the neural networks, in this case, we have used 

the commercial packages provided by Neural Planner Software and Alyuda Research, LLC 

that allow a variety of activation functions very used in literature such as; sigmoidal 

function
52

, linear function
53

 or hyperbolic tangent
54

.  Likewise, it is also possible to use 

different of training algorithms, also used extensively in literature, such as Back 

Propagation
55

, Levenberg-Marquadt
56

, quasi-Newton algorithm
57

, etc.  

 

Results and Discussion 

 

Individual artificial neural networks for prediction properties 

All artificial neural networks were implemented with ten input variables that correspond 

to the variables necessary to identify the mixture components (three variables for each) and 

the temperature at which the experiment was performed.  Once, the input variables (mixture 

chemical descriptor variables) in the system are known, it is necessary to determine the 

number of neurons distributed in the intermediate layers.  The following equation               
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(Equation 4) is used to determine the number of neurons in the intermediate layers.  Where N 

is the number of mixture chemical descriptor variables used as input variables, and n is the 

number of neurons that is necessary to spread in the intermediate layers (may be in one layer, 

two or even three intermediate layers). 

1 ˂ n ˂ N+1 (4) 

The following step is to implement the ANN and proceed to obtain the parameters that 

indicate the quality of the adjustment, such as:  the linear squared correlation coefficient (R
2
), 

Root Mean Square Error (RMSE, Equation 5)
 
and the average percentage deviation (APD, 

Equation 6), where dt represents the experimental value, yt represents the output value 

predicted by the ANN and M represents the cases number.  All these parameters, RMSE and 

APD, are calculated for the training phase, denoted by subscript T, validation phase, denoted 

by subscript V, and for both phases, average, denoted by subscript AV. 

 

M

yd

RMSE

M

n

tt




 1

2

     (5) 

M

x
d

dy

APD

M

n t

tt 100
1






















 






   (6) 

With these parameters, the goodness of the power prediction of different ANN models is 

estimated, in this regard Root Mean Square Error in validation phase (RMSEv) has been used. 

Table 3 shows the best individual artificial neural networks implemented to predict the values 

of density, viscosity and refractive index.  Considering data shown in Table 3, we can say that 

the best neural networks for each predicted variable present a good fit (R
2

T > 9.996∙10
-01

)             

for training phase.  Regarding the error in each of neural networks we can say that networks 

implemented to predict the density and the refractive index have a lower RMSE                   

(RMSET < 9.941∙10
-04

) and the implemented neural network to predict the viscosity has a 

RMSE of 1.703∙10
-01

 mPa∙s, corresponds to a 3.124%. 

 

Table 3.  Best neural network implemented for density, refractive index (Ref. ind.) and 

viscosity. R
2
 is the square correlation coefficient for training (R

2
T), validation (R

2
V) and 

global phases (R
2

av), Root mean square error of training (RMSET), testing (RMSEV) and 

global phases (RMSEav) and Average percentage deviation for training (APDT), validation 

(APDV) and global phases (APDav) for different artificial neural network models developed. 

Finally, topology and training cycles for the best neural networks implemented for each 

property. 

ANN R2
T RMSET APDT R2

V RMSEV APDV R2
av RMSEav APDav 

Density 9.999∙10-01 9.941∙10-04 7.275∙10-02 9.999∙10-01 1.489∙10-03 9.241∙10-02 9.999∙10-01 1.138∙10-03 7.766∙10-02 

Ref. Ind. 9.996∙10-01 9.668∙10-04 5.673∙10-02 9.995∙10-01 9.578∙10-04 5.466∙10-02 9.995∙10-01 9.646∙10-04 5.621∙10-02 

Viscosity 9.999∙10-01 1.703∙10-01 3.124 9.988∙10-01 6.088∙10-01 3.982 9.996∙10-01 3.378∙10-01 3.338 

          

ANN Topology Training Cycles      

Density 9-18-1 1,600,00      

Refractive index 9-18-1 75,000      

Viscosity 9-18-1 600,000      
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After verification of the correct prediction power of the neural networks to the training 

phase, we proceeded to calculate the fits for the validation phase using the previously 

reserved validation data (Table 2). As we can see in Table 3, the best neural network 

implemented for predict density provides a good prediction power (R
2 

> 9.999∙10
-01

) with a 

low root mean square error (RMSEV < 1.489∙10
-03

 g∙cm
-3

) for the validation set. In the case of 

refractive index neural network the correlation coefficient is 9.995∙10
-01 

with a low RMSEV of 

9.578∙10
-04

, both neural networks present a low average percentage deviation, 9.241∙10
-02

 and 

5.466∙10
-02

 respectively. As in the previous case, the neural network to predict the viscosity 

presents worst correlation coefficient (9.988∙10
-01

), root mean square error (6.088∙10
-01 

mPa∙s) 

and average percentage deviation (3.982) neural network.  All these neural networks were 

trained with different learning rates, to control the weights variation for a good descent 

direction
58

 and momentum to speed up convergence and maintain generalization power
59

. The 

maximum number of training cycles was set at the time that the error in the validation phase 

begins to rise (Table 3). 

Figures 3 show the good fits obtained for the training and validation phase by different 

ANNs implemented, which are very close to a linear trend with slope 1 and 0 intercept one 

trend line, also, dispersion is small for each point with some exceptions. 

  

 

Figure 3.  Plot of experimental values versus predicted values for training values () and 

testing values () by ANN to predict density (A), refractive index (B) and                                 

viscosity (C). Red line represents the one trend line. 

 

Our neural networks shows good results but we think that it is possible predicted the three 

properties at the same time with an only one neural network.  In this case, all the data set have 

been divided into two new groups, the first group for training phase and the second group for 

validate the neural network model implemented in the before phase (Table 4).  As in the 
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previous case, we used the cases with known output and we excluded the cases with viscosity 

values exceeding 100 mPa·s.  

 

Table 4.  Data used for training and validation phases reported in the literature consulted
5,36-45

 

for different neural networks implemented. 

 Training Validation 

Total cases used 684 227 

 

The best neural network implemented has a topology 9-13-3, that’s, a single network, with 

nine input neurons, an intermediate layer with 13 neurons, and finally, and three neurons in 

the output layer. This ANN 9-13-3 was trained for 100,000 cycles.  This neural network was 

chosen in function of lower RMSE in the validation phase for viscosity.  The parameters that 

show the goodness of fit obtained for the new neural network implemented are shown in 

Table 5.  These parameters can be compared with the same parameters for the individual 

ANN in Table 3.  As we can see, the fits of the network with three outputs lose power 

prediction in training phase of density, refractive index and viscosity (9.941∙10
-04

 g∙cm
-3             

vs. 1.793∙10
-02 

g∙cm
-3

, 9.668∙10
-04 

vs. 4.128∙10
-03

 and 1.703∙10
-01 

mPa∙s vs. 1.095 mPa∙s 

respectively, in terms of RMSE) in compared with individual neural networks.  This 

behaviour also occurs in validation (1.489∙10
-03 

g∙cm
-3 

vs. 1.741∙10
-2 

g∙cm
-3

, 9.578∙10
-04                  

vs. 4.469∙10
-3 

and 6.088∙10
-01 

mPa∙s
 

vs. 1.139 mPa∙s respectively, based on RMSE).  

Therefore demonstrated that the development of a network with three outputs is not feasible 

because worsens the predictive power to these three variables, so its use is strongly 

discouraged, especially in the case of viscosity with an average percentage deviation             

of 12.45%. 

 

Table 5.  Best neural network implemented for density, refractive index (Ref. ind.) and 

viscosity. R
2
 is the square correlation coefficient for training (R

2
T), validation (R

2
V) and 

global phases (R
2

av), Root mean square error of training (RMSET), testing (RMSEV) and 

global phases (RMSEav) and Average percentage deviation for training (APDT), validation 

(APDV) and global phases (APDav) for artificial neural network model developed with three 

outputs. Finally, topology and training cycles for the best neural networks implemented. 

Property R2
T RMSET APDT R2

V RMSEV APDV R2
av RMSEav APDav 

Density 9.928∙10-1 1.793∙10-2 1.337 9.912∙10-1 1.741∙10-2 1.267 9.923∙10-1 1.780∙10-2 1.320 

Ref. Ind. 9.917∙10-1 4.128∙10-3 2.324∙10-1 9.813∙10-1 4.469∙10-3 2.351∙10-1 9.893∙10-1 4.216∙10-3 2.331∙10-1 

Viscosity 9.957∙10-1 1.095 1.210∙10+1 9.949∙10-1 1.139 1.353∙10+1 9.955∙10-1 1.106 1.245∙10+1 

 

In Figures 4 we can see the errors distribution for all different neural networks as a 

function of training cycles and intermediate neurons used.  It was necessary limit the area 

graphs to appreciate the difference between models.  We can see that for a small number of 

neurons in the intermediate layers, the fits of different neural networks are worse than if the 

number of neurons is greater.  It can be seen that each chosen neural network coincide with 

the lower RMSE zone, also we can see as the individual networks (located to the left) have 

minor errors in terms of RMSE than ANN with three outputs (located to the right), it also 

seeing, as the variation of errors across the bonnet test is more heterogeneous. 
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Figure 4.  Variation of the error in the validation phase as a function of training cycles 

number for the best ANNs implemented for density (A and B), refractive index              

(C and D) and viscosity (E and F). Left (individual ANN),                                    

right (ANN with three outputs). 
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The relative importance of the different mixture descriptor variables was obtained from 

the sum of the weights of the neurons of the input layer that’s corresponds to the strength of 

each neuron interconnection.  In this case the importance of nine variables can be seen in 

Figure 5. 

Taking into account the relative contribution of each input parameter, we can say that in 

general the most important mixture chemical descriptors are; the molar fraction in the mixture 

(x3) the density (ρ3) and the molecular weight (Mw3) of the ionic liquid.  The three most 

influential chemical descriptors are those that characterize the ionic liquid and they affect 

different aspects as the solutes diffusion or the solution behavior under stirring.  Those input 

variables are strongly influenced by the structure of the ions forming the ionic liquid and they 

are good descriptor of the mixtures. 

 

 

Figure 5.  Importance of variables for each different networks implemented in this paper, that 

is; i) Mole fraction (x1), density of pure compound (ρ1) and Molecular weight (MW1) for the 

first component of the mixture, ii) Mole fraction (x2), density of pure compound (ρ2) and 

Molecular weight (Mw2) for the second component of the mixture, iii) ii) Mole fraction (x3), 

density of pure compound (ρ3) and Molecular weight (Mw3) for the ionic liquid 

 

The error of the designed individual neural networks for viscosity prediction is due in part 

to the database (training and validation).  In the selection of data sets, the viscosity values are 

distributed heterogeneously. In fact, if we analyse the results for intervals of viscosity values 

(Table 6), we can see, for the individual neural network, both in the training and validation 

phase, the interval of viscosity values with largest errors (in terms of percentage) is the 

interval (0-20], when we increase the range of the interval, the mistake is lower, except in the 

intervals [40-60) and [80-100] of validation phase where the error increases but this behaviour 

is not statistically representative.  The larges errors in prediction of viscosity ANN compared 

with errors in the variables density and refractive index, suggests that the errors are due to the 

wide viscosity value range.  Thus, the error in the prediction of the viscosity should be 

improved if new mixtures are included. This fact was contrasted in previous implementations, 

where training and validation phases had a smaller number of cases; in these neural networks 

the errors for density, refractive index and viscosity are bigger.  The most significant case was 

the viscosity (583 training cases and 195 validation cases) where the average percentage 

deviation was 9.023, by contrast, the artificial neural network presented in this paper                    
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(684 training cases and 227 validation cases) has an APD of 3.982. Other factors that could 

improve the errors are, the study of the behaviour of viscosity with temperature, expansion of 

additional neural networks for binary mixtures, ternary mixtures and mixtures lacking ionic 

liquid, or increase mixtures with two or more ionic liquids, all in order to get a universal tool 

for predicting these variables in any kind of mixtures. 

 

Table 6.  Fits for viscosity to individual ANN according to intervals of viscosity values 

(mPa∙s). R
2
 is the square correlation coefficient for training (R

2
T) and validation (R

2
V), Root 

mean square error of training (RMSET) and validation (RMSEV), the Average percentage 

deviation for training (APDT) and validation phase (APDV) and cases number for training (nT) 

and validation (nV) phases for the best artificial neural network model developed to predict 

the viscosity. 

Training phase  Validation phase 

R
2
T RMSET APDT nT Intervals of viscosity value nV R

2
V RMSEV APDV 

9.991∙10
-01

 1.436∙10
-01

 3.716 555 [0-20) 184 9.983∙10
-01

 1.938∙10
-01

 4.560 

9.984∙10
-01

 2.649∙10
-01

 7.404∙10
-01

 77 [20-40) 26 9.930∙10
-01

 5.375∙10
-01

 1.062 

9.975∙10
-01

 2.838∙10
-01

 4.689∙10
-01

 31 [40-60) 11 9.384∙10
-01

 1.563 1.862 

9.993∙10
-01

 1.613∙10
-01

 1.536∙10
-01

 18 [60-80) 5 8.808∙10
-01

 2.462 2.521 

9.999∙10
-01

 8.899∙10
-02

 5.788∙10
-02

 3 [80-100] 1 -- 1.253∙10
+01

 4.327 

9.999∙10
-01

 1.703∙10
-01

 3.124 684 (0-100] 227 9.988∙10
-01

 6.088∙10
-01

 3.982 

 

Conclusions 

 

In the present work, an artificial intelligent based approach was applied to investigate the 

possibility of the artificial neural networks model to predict the density, refractive index and 

viscosity of binary and ternary mixtures in the presence of ionic liquids. 

Data have been compiled from cases reported in the published literature (1052 cases were 

used), and we have used the most studied variables to see the suitability of ANN models.  In 

this sense, for future work it could be possible to study other properties, such as solubility or 

conductivity, if there is enough data reported in the literature. 

The data cases were divided in two different groups, a training (75% data cases) group for 

developed different models and a validation group (25% data cases) to check the best model 

development.  The mixture chemical descriptor variables employed are able to encode the 

complexity of binary and ternary system. 

All individual neural networks developed, to predict the density, refractive index and 

viscosity of binary and ternary mixtures of ionic liquids, have good fits in terms of R
2
 (greater 

than 9.995∙10
-01

).  Likewise presents a low error in terms of RMSE, corresponding to an APD 

very low (less than 7.766∙10
-02 

%) with the exception of the model to predict of the viscosity 

where the error rate rises to 3.338%. 

We can recommend artificial neural networks as a suitable prediction method for density, 

viscosity and refractive index of binary and ternary mixtures of ionic liquids.  It has been 

demonstrated that the models can predict chemical values and physical properties, however it 

is recommended continuous improvement of these models with new cases investigated in 

order to get a greater power of prediction. 
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