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Abstract: Activity coefficients at infinite dilution are important property in solute-solvent interactions. 

Experimental techniques show high costs, skilled labour and safety. To solve this, a neural network model with 

five different topological descriptors to implement different Artificial Neural Network has been implemented. 

The best Artificial Neural Network (5-11-8-1 topology) presents good fits for the training phase with an Average 

Percentage Deviation of 1.85%. Similar results have been obtained for the validation phase of the Artificial 

Neural Network (1.88%). The implemented Neural Networks techniques showed better results than other 

developed methods, around 30.70% and 24.60% for training and validation phase, respectively.  
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Introduction   

 

Activity coefficients at infinite dilution (
∞
) are important to supply many aspects about 

the solute–solvent interactions
1-3

, the type and the strength of interactions between the solvent 

and the solute
1,4

 or the development of thermodynamic models
2
. They can also provide us 

information about the design of separation and extraction processes
2,5

 or the selection of 

solvents for rectification and extraction
2
, the behaviour of ionic liquids

6
, the prediction for 

azeotrope formations
7
, the mutual-solubility estimation

8
, etc. 

There are different experimental methods to determinate the activity coefficients at infinite 

dilution
1,9,10

 such as gas-liquid chromatography (GLC)
11

, dilutor method
12

 or inverse gas 

chromatography
13

. All these experimental techniques show some important limitations as 

high costs, skilled labour and safety
1,4

. Therefore, it would be advisable to develop predictive 

models that are able to determine the value of activity coefficients at infinite dilution. 

Nowadays, there are many theoretical models to determine this parameter
1
 as analytical 

solution of groups (ASOG)
14-16

 and unified functional activity coefficient UNIFAC
17,18

. Over 

the past decades, models based in quantitative structure-property relationships (QSPRs) have 

been proposed to estimate activity coefficients, both by multiple linear regression (MLR) and 

Artificial Neural Networks (ANN)
19-24

. QSPR models are based on the relationship between 

the molecular chemical descriptors and a desired physicochemical property
19

, in this case the 

activity coefficients at infinite dilution. In many cases, this method is hardly complicated due 

the necessity to choose between all molecular chemical descriptors that will be used to feed 

the prediction model. In this sense, it is necessary a method to optimize the choice of 
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variables used later for the implementation of the prediction model. A good method, for the 

selection of the input variables, is the Ant Colony Optimization method (ACO). In fact, this 

method has been used in the last years to develop predictive models
25,26

.  

In the present manuscript, a prediction model to determinate the infinite dilution activity 

coefficients of hydrocarbons in aqueous solutions has been developed using Artificial Neural 

Network based in variables selected by the Atabati´s ACO method
1
. Artificial Neural 

Networks were developed for human reasoning modelling, built around an artificial neuron 

that simulates the biological neuron to process information
27

. Recently, Neural Networks have 

been shown as a useful tool for the prediction in various fields to solve complex problems
27,28

. 

For example, this technology can be applied in areas as medicine
29,30

, chemistry
31-33

, 

atmospheric sciences
34,35

, or food technology
36,37

, inter alia. 

 

Experimental Section  

 

Data Set 

 

The experimental values of infinite dilution activity coefficients at infinite dilution 

coefficients in water, at temperature 298.15K, of 105 hydrocarbons cases have been taken 

from literature
1,20

. Data set have been divided into two groups, the first one consisting in 75 

cases for the Artificial Neural Networks training, and the second one of 30 cases to validate 

the good accuracy of the implemented Neural Networks. The topological descriptors and the 

two groups are exactly the same chosen by Atabati et al.
1
. Firstly, they used HyperChem 

Software to draw structures of the molecules, and secondly they calculated the different 

quantum-chemical descriptors using Dragon Software
1
. As result, five different topological 

descriptors have been chosen: i) IC0 corresponds with information content index 

(neighbourhood symmetry of 0-order); ii) ADDD corresponds with the average 

distance/distance degree iii) Mor10m corresponds with the 3D-Morse – signal 10/weighted by 

atomic masses; iv) HTm corresponds with the H total index/weighted by atomic masses, and 

finally, v) refractivity, corresponds with the relationship between the angle of incidence and 

refraction in a medium
1
. 

 

Artificial Neural Network 

 

A Multilayer Neural Network with an input layer to collect data of training cases has been 

used. The equations that govern the ANN learning are the propagation function, that transmits 

information between the different neurons in the different layers (Eq. 1), and the activation 

function, that provides an new value in different neurons (Eq. 2). N represents the neurons in 

input layer, wfd is the weight between the f neuron of input layer and the d neuron in the 

intermediate layer, present in intermediate layer, and bf is the value of the “bias” neuron 

associated to each the intermediate neuron f. Then, the value which has been obtained by the 

propagation function was used by the activation function to provide an output value
27,31

. 

fdfd

N

d
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 The output-neuron error has been previously established by the technician. Thus, if it did 

not adjust to the previously established error, the process continued until the desired value. 

The error was used to modify the weights between different neurons. In fact, this error has 



Mediterr.J.Chem., 2015, 3(6),  G.  Astray et al. 1075 

 

 

been calculated according the Eq. 3, where 

g  corresponds with the experimental value and 

yg is the predicted value calculated in the output neuron g
27,28,31

. 
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  The notation used to represent and identify all neural topologies developed is: Ninput - Ni1-

Ni2- Ni3 - Noutput being Ninput and Noutput the neurons present in the input and output layer and 

Ni1, Ni2 and Ni3 correspond with neurons in the first, second and third intermediate layer 

developed in the ANN model, respectively
27,28

. 

 

  To choose the best Neural Network model we have used the Root Mean Square Error 

(RMSE) comparing predicted values (yg) and real values (dg), according to Eq. 4.  
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  Furthermore, the Average Percentage Deviations (APD) (Eq. 5) and the Individual 

Percentage Deviations (IPD) (Eq. 6) have been calculated in order to compare the errors of 

developed models. 
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Results and Discussion  

 

Training phase of ANN 

 

The Artificial Neural Networks activity requires a high implementation of networks using 

the trial and error method to obtain the best Neural Network to determine more accurately the 

activity coefficients at infinite dilution. Due this, five hundred Neural Networks has been 

implemented, changing its topology and its training cycle numbers.  

 

Table 1 shows the top 5 Neural Networks implemented. This table shows the linear fit 

coefficient (R
2

T), the Root Mean Square Error (RMSET), and Average Percentage Deviation 

(APDT) in the training phase. Table 1 shows a neural network with a lower RMSE and it 

presents a 5-11-10-1 topology. This Neural Network presents a R
2
 coefficient of 1.000 with a 

RMSET = 0.018 that represents a 0.085 % Average Percentage Deviation for the training 

phase. The best Neural Network consists in a Neural Network with five neurons in the input 

layer, two intermediate layers with eleven and ten neurons respectively, and finally, an output 

layer with only a neuron corresponding to the variable that we try to predict (the value of 

activity coefficients at infinite dilution). 
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Table. 1. Fits of the five best ANN implemented for the training phase using different ANN architectures. R

2
T 

represents the square correlation coefficient, RMSET, the Root Mean Square Error and APDT, the Average 

Percentage Deviation. 

Cycles Topology R
2

T RMSET APDT 

1,024,000 5-11-10-1 1.000 0.018 0.085 

1,024,000 5-11-7-1 1.000 0.019 0.098 

1,024,000 5-11-8-1 0.999 0.030 0.148 

512,000 5-11-9-1 0.999 0.031 0.113 

1,024,000 5-7-6-1 0.999 0.034 0.226 

 

Validation phase of ANN 

 

Once the adjustment of different ANN for the training phase were calculated, we have 

proceeded to fit the validation phase and we ordered the ANN from lowest to highest 

validation RMSE (RMSEV). In this case, 5-11-8-1-topology was the best Neural Network 

with a lower RMSE (0.291). Others fits of this ANN presented good results with a R
2
 = 0.986 

and a 1.875% of APD (Table 2). This network had five neurons in the input layer, two 

intermediate layers (the first with eleven neurons and a second intermediate layer eight 

neurons), and finally, an output layer with a single neuron. 

 
Table. 2. Fits of the five best ANN implemented for the validation phase using different ANN architectures. R

2
V 

represents the square correlation coefficient, RMSEV, the Root Mean Square Error and APDV, the Average 

Percentage Deviation. 

Cycles Topology R
2
V RMSEV APDV 

64,000 5-11-8-1 0.986 0.291 1.875 

32,000 5-7-1 0.983 0.307 2.084 

16,000 5-11-7-1 0.984 0.316 1.811 

16,000 5-7-4-1 0.984 0.317 1.944 

64,000 5-7-1 0.982 0.321 2.310 

 

Best Artificial Neural Network implemented 

 

The aim of the present manuscript was to implement a tool based on Neural Networks that 

would be able to predict the activity coefficients values at infinite dilution of various 

hydrocarbons. If we choose the Neural Network that has the lowest RMSE in the training 

phase, the network only fits perfectly with the cases that have been trained but not with other 

patterns that it had not been previously trained. In order to predict the activity coefficients at 

infinite dilution to untrained cases, we had to choose a Network with the lowest RMSE in the 

validation phase. Therefore, we chose a network with a 5-11-8-1 topology (Table 3). 

From Fig. 1 we can see the experimental activity coefficients at infinite dilution versus the 

predicted values our neural network model. As it can be observed, these results are 

satisfactory according the line of slope one. Moreover we can show the Average Percentage 

Deviation for training phase at Fig. 2. The Neural Network chosen (5-11-8-1) has an 

APD=1.84%, with a minimum error of -8.18% and a maximum error of 6.59% for the training 

phase (Fig. 2). In comparison with the MLR model that represents an APD of 2.70%, with a 

minimum error of -15.75% and a maximum error of 9.32%.  
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Table. 3. Topology of the five best Neural Networks implemented using different ANN architectures. R

2
 

represents the square correlation coefficient for training (R
2
T), and validation phase (R

2
V), Root Mean Square 

Errors of training (RMSE
2
T) and validation phase (RMSE

2
V) and Average Percentage Deviation for training 

(APDT) and validation phase (APDV). 

Cycles Topology R
2

T RMSET APDT R
2
V RMSEV APDV 

64,000 5-11-8-1 0.990 0.277 1.843 0.986 0.291 1.875 

32,000 5-7-1 0.987 0.317 2.133 0.983 0.307 2.084 

16,000 5-11-7-1 0.979 0.397 2.568 0.984 0.316 1.811 

16,000 5-7-4-1 0.984 0.350 2.392 0.984 0.317 1.944 

64,000 5-7-1 0.989 0.286 1.888 0.982 0.321 2.310 

 

 

  
Fig. 1. Experimental Values for activity coefficients at 

infinite dilution (lnγ
∞

exp)
1,20

 versus predicted values 

(lnγ
∞

pred) for the training phase of the 5-11-8-1 Neural 

Network. Black line represents the line of slope one 

Fig. 2. Average Percentage Deviation for each 

cases of the ANN training phase (5-11-8-1). 

 

 

The study of Atabati et al. concluded with a great model to predict this property
1
. 

Therefore, the new tool should improve the existing method. Consequently, we will analyse 

the main differences between our model and the model developed by Atabati et al.
1
. Table 4 

shows the training phase fits of the two implemented models, firstly the Atabati et al. model
1
, 

and secondly the model based in ANN developed in this paper. The improvement in terms of 

RMSE for the training phase is very significant. In fact, it is around 30.7%, representing in 

terms of APD about 31.4%. 

 
Table. 4. Fits for training phase, for each of the prediction models, Atabati et al.

1
, and Neural Network model 

implemented in the present article. Data used to make fits ACO-MLR model are show in Atabati et al.
1
. 

Model Topology R
2

T RMSET APDT 

ACO-MLR
1
 

 
0.979 0.400 2.689 

ANN 5-11-8-1 0.990 0.277 1.843 

Improvement   30.7% 31.4% 

 

As shown, the Neural Network model presents better fits than those obtained by Atabati et 

al. (see Figs. 3 and 4)
1
. 
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Fig. 3. Experimental values for activity coefficients at 

infinite dilution (lnγ
∞

exp)
1,20

 versus predicted values 

(lnγ
∞

pred) for the training phase of ACO-MLR model
1
. 

Black line represents the line of slope one 

Fig. 4. Average Percentage Deviation for each 

cases of the ACO-MLR training phase 
1
. 

 

 

The next step is the validation of the chosen Neural Network with 30 previously reserved 

cases. These cases are the same used by Atabati et al.
1
. It is known that the Neural Network, 

in theory, should be the most powerful predictor for cases previously untrained. The 

experimental activity coefficients versus the predicted values of our model are represented in 

Fig. 5. All selected cases for the validation phase show good fits, not having outliers, and 

hence, being all successfully predicted. The individual error percentage for each validation 

case can be observed in Fig. 6. 

 

  
Fig. 5. Experimental values for activity coefficients at 

infinite dilution (lnγ
∞

exp)
1,20

 versus predicted values 

(lnγ
∞

pred) for the validation phase of the 5-11-8-1 Neural 

Network. Black line represents the line of slope one. 

Fig. 6. Average Percentage Deviation for each 

cases of the ANN validation phase (5-11-8-1). 

 

 

This Neural Network has an APD of 1.88%, with a minimum error of -5.35%, and a 

maximum error of 5.45% (Fig. 6) while the MLR model has an APD of 2.64%, with a 

minimum error of -5.08%, and a maximum error of 12.70%. 

Table 5 shows the validation phase fits for the models implemented, the model of Atabati 

et al.
1
 and the model based in Neural Networks, respectively. As in the previous case, the 

improvements for ANN are significant. It is approximately around 24.6% in terms of RMSE 

corresponding with 28.9% in terms of Average Percentage Deviation. 
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Table. 5. Fits for validation phase, for each of the prediction models, Atabati et al.

1
, and Neural Network model 

implemented in this article. Data used to make fits ACO-MLR model are show in Atabati et al.
1
. 

Model Topology R
2
V RMSEV APDV 

ACO-MLR
1
 

 
0.978 0.387 2.638 

ANN 5-11-8-1 0.986 0.291 1.875 

Improvement   24.6% 28.9% 

 

Figs. 7 and 8 show the graphical fits for the model developed by Atabati et al.
1
. If we compare 

Fig. 5 (ANN model) and 7 (Atabati et al. model), in terms of trend line, the Neural Network’s 

fits are closer than the Atabati’s model
1
. A significant improvement of the model based on 

Neural Networks can be observed in some cases. 

 

  
Fig. 7. Experimental values for activity coefficients at 

infinite dilution (lnγ
∞

exp)
1,20

 versus predicted values 

(lnγ
∞

pred) for the validation phase of ACO-MLR model
1
. 

Black line represents the line of slope one.  

Fig. 8. Average Percentage Deviation for each 

cases of the ACO-MLR validation phase
1
. 

 

 

Fig. 9 shows the selected Neural Network where it can be observed the architecture of the 

Neural Network with five neurons in the input layer, the nineteen neurons distributed in two 

intermediate layers (eleven neurons in the first layer and eight neuron in the second layer) and 

the output layer consisting of one neuron. 

 

 
Fig. 9. Topology of Artificial Neural Network (5-11-8-1). 
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As quote above, the specialization of input neurons is marked by the value of the weights 

of each neuron with the first intermediate layer. The absolute-value sum of the weights of 

each neuron contributes to determine the importance of the input variable to predict the 

wanted value. Table 6 shows the weight values of each Neural Network’s neuron. Here, we 

can also see the importance of each input variable to predict the output variable. According to 

this, there are two major variables, i) HTm that corresponds with the H total index/weighted 

by atomic masses with an importance of 26.79% and ii) ADDD that corresponds with the 

average distance/distance degree with 23.84%. The least important input variable is Mor10m 

that denotes the 3D-Morse- signal 10/weighted by atomic masses (14.93%) 

 
Table. 6. Weights between input layer and first intermediate layer (light grey), weights between first and second 

intermediate layers (light yellow), weights between second intermediate layer and output layer (light red), 

importance of variables in percentage (light blue), and finally, biases (light green) for the best implemented 

Neural Network (5-11-8-1). 

ICO ADDD Mor10m HTm 
Refractivit

y 
 Variable 

Importance 

(%) 
  bias 

0.98 -1.65 -3.53 2.85 3.40  HTm 26.79   -3.56 

-2.72 4.16 1.36 0.96 0.05  ADDD 23.84   -1.84 

-0.74 2.08 -0.95 0.50 1.51  IC0 18.87   -4.57 

1.76 6.26 2.92 -11.78 2.19  Refractivity 15.56   -0.29 

-0.49 1.04 -0.53 0.70 -0.08  Mor10m 14.93   -3.19 

-3.91 -0.48 0.58 5.05 2.20        -1.96 

-0.48 2.86 1.61 2.31 -1.40        -4.32 

-1.35 2.74 -1.13 1.02 2.83        -5.43 

-6.36 1.17 2.08 2.20 0.83        3.15 

-1.05 2.54 -0.81 0.58 2.27        -5.18 

-0.51 0.73 -0.61 0.95 0.02        -3.06 

            1.13 

-0.93 -0.84 0.12 -2.31 -0.30 -1.54 -0.89 0.31 -0.86 0.35 -0.39  0.10 

-3.30 2.27 0.24 -1.65 -0.22 -3.89 2.32 0.28 -1.90 0.47 -0.37  0.58 

1.87 -1.25 0.67 -1.42 -0.53 0.68 -3.87 1.66 2.25 1.27 -0.56  0.93 

-1.23 -0.53 0.10 -2.16 -0.29 -1.70 -0.55 0.25 -0.99 0.32 -0.39  8.76 

0.04 -0.80 -2.46 -0.39 -1.09 3.85 0.52 -3.62 -3.47 -3.02 -0.99  1.83 

-0.78 -1.50 -0.03 -2.70 -0.30 -1.51 -0.99 0.09 -1.22 0.17 -0.39  0.60 

-1.81 0.19 0.10 -1.94 -0.28 -2.04 0.19 0.20 -1.23 0.31 -0.39  1.82 

-0.76 -1.51 -0.02 -2.70 -0.30 -1.50 -1.02 0.10 -1.20 0.18 -0.39  8.33 

             

-3.16 -3.37 -2.07 -3.02 -4.38 -3.59 -2.84 -3.59      

 

Conclusion 

 

An Artificial Neural Network with a low margin of error in the prediction of activity 

coefficients at infinite dilution has been implemented. The best Artificial Neural Network has 

a 5-11-8-1 topology, it has been trained with 75 cases and 30 cases validated for 64,000 

cycles. This ANN presents a R
2
 of 0.990 in the training phase, a RMSE of 0.277 and an APD 

of 1.85%. For the validation phase, it presents a R
2
 of 0.986, a RMSE of 0.291 and an 

Average Percentage Deviation of 1.88%. 

In terms of Root Mean Square Error and Average Percentage Deviation, the implemented 

Neural Network model improves the prediction model based in ACO-MLR
1
, both during the 
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training phase as in the validation phase. These improvements, in terms of RMSE, are 30.70% 

and 24.60% for the training and validation phase, respectively. 

To sum up, the back propagation Neural Network model has a high predictive power, and 

it does not show outliers. In fact, the results obtained by the Neural Network advise the use of 

Artificial Neural Networks to estimate the activity coefficient at infinite dilution using the 

ACO method, which determine the optimal descriptors of hydrocarbons in water that are 

significant to predict them.  

New insights in order to save resources, materials, money and time needed to develop the 

experimental method to determine the activity coefficient at infinite dilution would be saved 

with the use of the present prediction model. 
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