Glycyrrhetinic amides and their cytotoxicity

Niels Heise 1, Sophie Hoenke 1, Ahmed Al-Harrasi 2, Hans-Peter Deigner 3 and René Csuk 1,*

1 Full Address: Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
2 Full Address: University of Nizwa, Chair of Oman’s Medicinal Plants and Marine Natural Products, P.O. Box 33, PC 616, Birkat Al-Mauz, Nizwa, Sultanate of Oman
3 Full Address: Furtwangen University, Medicinal and Life Science Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen

Abstract: 3-O-Acetyl-glycyrrhetinic amides were prepared, and sulforhodamine B assays investigated their cytotoxicity. Their cytotoxicity strongly depended on the substitution pattern of the respective compounds. Thereby, an ethylenediamine-derived compound 2 performed the best, acting mainly by apoptosis. As far as heterocyclic amides are concerned, ring enlargement and the replacement of the distal nitrogen invariably led to a more or less complete loss of cytotoxic activity. Thus, the presence of a carbonyl function (C-30) seems necessary for providing significant cytotoxicity.

Keywords: Glycyrrhetinic acid; Amides; Cytotoxicity.

1. Introduction

Cancer remains one of the leading causes of death; as many cancers are extremely poorly treated, there is still a high demand for cytotoxic compounds. Natural products, particularly the pentacyclic triterpenes, have proven to be valuable starting materials for this purpose. Glycyrrhetinic acid (GA, Scheme 1) is a pentacyclic triterpenoid being the main component of the extract of licorice roots. Several interesting biological properties have been attributed to parent GA 1,10. Of particular interest seemed that GA is only slightly cytotoxic for different human tumor cell lines due to this acting mainly by apoptosis 11-20. However, although its cytotoxicity is lower than that of betulinic acid, several derivatives have shown promising and even excellent cytotoxic activity recently 11,13,18,19,21.

While there have been numerous studies on the cytotoxic activity of triterpene carboxylic acids such as oleanolic 22-26, ursolic 27-32, maslinic 33-40, or betulinic acid 41-49, the number of publications on glycyrrhetinic acid derivatives is incomparably smaller. This is all the more surprising as this triterpene carboxylic acid is very readily available even in large quantities from a renewable source and hence an ideal starting material for syntheses.

Amides of triterpene carboxylic acids have been shown in the past to be cytotoxic 11,18,19,21-24,26,33,35,37,39, and of special interest are those holding a heterocyclic ring at the distal amide position. Consequently, we became interested in the synthesis of 3-O-acetylated glycyrrhetinic acid amides holding heterocyclic moieties differing in the kind of heteroatoms (N, O, S), ring size (acyclic, 6, 7), and the steric demand of the heterocyclic system.

2. Results and Discussion

Acetylation of GA (Scheme 1) gave 1 in 91% 50 whose activation by oxalyl chloride in the presence of a catalytic amount of dimethylformamide (DMF) followed by the addition of either ethylenediamine, pipеразин, homopiperazine, morpholine, thiomorpholine, homomorpholine, homothiomorpholine, 1,4-diazabicyclo[3.2.2]nonane 24, 1,3-diazabicyclo[3.2.2]nonane 24,51 gave amides 2-10; reaction of 9 and 10 with methyl iodide resulted in the formation of the quaternary ammonium iodides 11 and 12, respectively. For comparison, primary amide 13 was prepared, and the Curtius degradation 52,53 of 1 gave amine 14.
To test the cytotoxic activity of the compounds, sulforhodamine B assays were performed employing a selection of different human tumor cell lines \(^{11,22,38,39}\). The results of these assays are compiled in Table 1.

Interestingly, compounds piperazine derived 3 \(^{11,54}\), and morpholine derived compound 4 \(^{18,55-57}\) are active, while their enlarged ring analogs 6 \(^{55-57}\) and 7 are not. Also, morpholine-derived 4 was shown to be cytotoxic, while thiomorpholine derived 5 was not active. Diazabiclo-derived compounds 9–12 performed poorly in the SRB assays since only 10 held a diminished cytotoxic activity. Amide 13 \(^{52,53,58-60}\) was not functioning, and amine 14 \(^{61-66}\) showed EC\(_{50}\) values 11.3 and 20.1 µM, respectively.
Table 1. Cytotoxicity of selected compounds a).

<table>
<thead>
<tr>
<th>#</th>
<th>A375</th>
<th>HT29</th>
<th>MCF-7</th>
<th>A2780</th>
<th>FaDu</th>
<th>NIH 3T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>18.7 ± 4.2</td>
</tr>
<tr>
<td>1</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>2</td>
<td>4.1 ± 0.3</td>
<td>4.3 ± 0.4</td>
<td>3.2 ± 0.3</td>
<td>2.0 ± 0.2</td>
<td>5.7 ± 0.6</td>
<td>4.3 ± 0.3</td>
</tr>
<tr>
<td>3</td>
<td>5.0 ± 0.3</td>
<td>4.4 ± 0.6</td>
<td>8.4 ± 0.8</td>
<td>8.2 ± 0.5</td>
<td>8.7 ± 0.9</td>
<td>8.7 ± 0.7</td>
</tr>
<tr>
<td>4</td>
<td>18.66 ± 1.63</td>
<td>5.11 ± 1.07</td>
<td>10.74 ± 1.00</td>
<td>12.0 ± 0.62</td>
<td>13.4 ± 1.1</td>
<td>12.30 ± 1.02</td>
</tr>
<tr>
<td>5</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>6</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>7</td>
<td>>30</td>
<td>>30</td>
<td>23.4 ± 3.0</td>
<td>22.4 ± 3.9</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>8</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>9</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>10</td>
<td>21.02 ± 0.4</td>
<td>24.7 ± 1.2</td>
<td>20.3 ± 1.4</td>
<td>19.0 ± 1.1</td>
<td>27.4 ± 2.2</td>
<td>25.5 ± 1.6</td>
</tr>
<tr>
<td>11</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>12</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>13</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>14</td>
<td>12.4 ± 0.8</td>
<td>17.3 ± 1.0</td>
<td>13.4 ± 0.9</td>
<td>11.3 ± 0.9</td>
<td>19.4 ± 0.9</td>
<td>20.1 ± 0.8</td>
</tr>
<tr>
<td>DX</td>
<td>n.d.</td>
<td>0.9±0.2</td>
<td>1.1±0.3</td>
<td>0.02±0.01</td>
<td>n.d.</td>
<td>0.06±0.03</td>
</tr>
</tbody>
</table>

a) SRB assay EC₅₀ values [µM] after 72 h of treatment; averaged from three independent experiments performed each in triplicate; confidence interval CI = 95%. Human cancer cell lines: A375 (melanoma, ATCC CRL_3222), HT29 (colorectal carcinoma, 91072201), MCF-7 (breast adenocarcinoma, CVCL_0031), A2780 (ovarian carcinoma, 93112519), FaDu (pharynx carcinoma, CVCL_1218), NIH 3T3 (non-malignant fibroblasts, ATCC CRL-158); cut-off 30 µM, n.s. not soluble, n.d. not determined. Doxorubicin (DX) has been used as a positive standard.

For most active compound 2, several additional assays were performed, e.g., an acridine orange/propidium staining (AO/PI) using A2780 tumor cells. Thereby, a red-colored nucleus indicated necrotic cells while a green fluorescence is indicative for apoptotic cells. Trypan blue staining of the cells followed by automatic cell counting allowed to differentiate between cells with an intact cell membrane and cells without. The results from these assays are compiled in Table 2; parent GA and amine 14 were investigated for comparison, too. The compounds show slightly worse cytotoxicity than the positive standard doxorubicin (DX). Since no pronounced selectivity was observed, no further experiments with a primary cell line were undertaken.

As a result, parent GA and compounds 2 and 14 mainly act by apoptosis after an incubation period of 2 days employing A2780 cells. This parallels previous findings (for GA and 14 and A549 cells).

Table 2. Percentage of apoptotic cells (A2780 cells) after 48 h of incubation (at given concentration; 2 x EC₅₀; results from 6-fold determination, trypan blue assay.

<table>
<thead>
<tr>
<th>concentration</th>
<th>GA</th>
<th>2</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 µM</td>
<td>70.1% ± 2.3%</td>
<td>89.5% ± 1.7%</td>
<td>80.4% ± 1.9%</td>
</tr>
<tr>
<td>4 µM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 µM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Conclusion

The cytotoxicity of 3-O-acetyl-glycyrrhetinic amides strongly depends on the substitution pattern of the respective compounds. An ethylenediamine-derived compound 2 performed best, followed by the piperazine derivative 3. Ring enlargement as well as the replacement of the distal nitrogen led invariably to a more or less complete loss of cytotoxic activity. The presence of a carbonyl function (C-30) seems necessary for providing significant cytotoxicity since amine 14 only held EC₅₀ values between 11.3–20.1 µM, respectively. Most active compound 2 (EC_{50, A2780 cells} = 2.0 µM) mainly acted by apoptosis.
Acknowledgments

We like to thank Dr. D. Ströhl, Ms Y. Schiller, and Ms S. Ludwig for taking the MS spectra; several MS spectra were recorded by the late Dr. R. Kluge; IR, UV-Vis spectra and optical rotation and microanalyses were measured by Mr M. Schneider. The cell lines were provided by Dr. Th. Müller (Dept. Oncology); some of the biological tests were performed by Dr. L. Fischer. We like to thank Mr S. Friedrich for his help in the lab.

4. Experimental

NMR spectra were recorded using the Varian spectrometers DD2 and VNMR (400 and 500 MHz, respectively). MS spectra were taken on an Advion expression 1. CMS mass spectrometer (positive ion polarity mode, solvent: methanol, solvent flow: 0.2 mL/min, spray voltage: 5.17 kV, source voltage: 77 V, APCI corona discharge: 4.2 μA, capillary temperature: 250°C, capillary voltage: 180 V, sheath gas: N2). Thin-layer chromatography was performed on pre-coated silica gel plates supplied by Macherey-Nagel. IR spectra were recorded on a Spectrum 1000 FT-IR-spectrometer from Perkin Elmer. The UV/Vis-spectra were recorded on a Lambda 14 spectrometer from Perkin Elmer. The optical rotations were measured either on a JASCO P-2000 or a Perkin-Elmer polarimeter at 20°C. The melting points were determined using the Leica hot stage microscope Galen III and are uncorrected. The solvents were dried according to usual procedures. Glycyrrhetinic acid was bought from “Orgentis Chemicals GmbH” and used as received.

4.1. Cell lines and culture conditions

Following human cancer cell lines A375 (malignant melanoma), HT29 (colon adenocarcinoma), MCF-7 (breast cancer), A2780 (ovarian carcinoma), FaDu (pharynx carcinoma), HeLa (cervical carcinoma), A2058 (melanoma), HT29 (colon adenocarcinoma), MCF (breast cancer), A2780 (ovarian carcinoma), FaDu (pharynx carcinoma), NIH 3T3 (fibroblasts) were used. All cell lines were obtained as received.

4.2. Cytotoxicity assay (SRB assay)

To evaluate the cytotoxicity of the compounds, the sulforhodamine-B (Kiton-Red S, ABCR GmbH, Karlsruhe, Germany) micro-culture colorimetric assay was used. The assay was carried out as described in the manual of the supplier. The EC50 values were averaged from three independent experiments performed in triplicate and calculated from semi-logarithmic dose-response curves applying a non-linear 4P Hills-slope equation.

4.3. Apoptosis test – acridine orange/propidium iodide (AO/PI) test

AO/PI dye and fluorescence microscopy on A2780 cells were performed to test or apoptotic cell death. The assay was carried out as described in the manual of the supplier. In short: Approx. 500000 cells were seeded in cell culture flasks and allowed to grow for 24 hours. After removing the medium, the substance-loaded medium was loaded, and the cells were incubated for 48 hours. The supernatant medium was collected and centrifuged, the pellet was suspended in phosphate-buffered saline (PBS) and centrifuged again. The liquid was removed, the cells re-suspended in PBS, mixed with AO/PI, and investigated using a fluorescence microscope.

4.4. Apoptosis test – trypan blue cell counting

Following the procedure, as described above for the AO/PI test, equal amounts of a trypan blue solution (0.4% in PBS; pH = 7.2) and a suspension of the pellet in PBS were mixed and transferred onto chamber slides (Invitrogen™), and an automatic cell counter (Invitrogen™ countess automated cell counter) was used for counting the cells, differing between cells and an intact cell membrane and cells without.

4.5. General procedure for the synthesis of amides 2–10 (GPA)

To a 1 (1 eq.) solution in dry DCM, a drop of dry DMF and oxalyl chloride (4 eq.) were added at 0°C. Stirring at 25°C was continued until the evolution of gases had ceased. The volatiles were removed under reduced pressure. The corresponding amine (3 eq.) was dissolved in dry DCM (20 mL), and a solution of TEA (4.2 eq.), DMAP (cat.) in dry DCM (10 mL), was added. To this mixture, the reaction mixture (dissolved in dry DCM) from above was slowly added at 0°C, and stirring at 23°C was continued for 1 day. Usual aqueous workup followed by liquid column chromatography (CHCl3/Methanol) gave the products 2–10, respectively.

(3β, 20β) 3-Acetylxylo-11-oxoolean-12-en-29-oic acid (1)

Acetylation of GA as previously described gave 2 (4.9 g, 91%) as a colorless solid; m.p. 311–313°C (lit.50 310–313°C); [α]D D20 = +162.7° (c 0.85, CHCl3) (lit.:50 [α]D D20 = +163.3° (c 1.00, CHCl3)).

MS (ESI, Methanol) m/z 514 (100%, [M+H]+, 536 (60%, [M+Na]+).

(3β, 20β) 3-Acytelyoxy-N-(2-aminethyl)-11-oxoolean-12-en-29-amide (2)

Following GPA from 1 and ethylenediamine, 2 (398 mg, 71%) was obtained as a colorless solid; m.p. 114–117°C (lit.:11 126°C); [α]D D20 = +81.2°
Following GPA from 2 (400 mg, 0.8 mmol) and thiomorpholine (0.3 mL, 3.0 mmol), 6 (390 mg, 67%) was obtained as a colorless solid; m.p. 231–233°C; Rf = 0.36 (SiO2, toluene/EtOAc/heptane/HCOOH, 80:26:10:5); [α]D20 = +117.0° (c 0.182, CHCl3); UV-Vis (CHCl3): λmax (log ε) = 248.7 nm (4.13); IR (ATR): ν = 2949w, 1728m, 1656s, 1630m, 1364w, 1244s, 1160m, 1026m, 986w, 958m, 751s, 667w cm⁻¹;

1H NMR (400 MHz, CDCl3): δ = 5.70 (s, 1H, 12-H), 4.51 (dd, J = 11.7, 4.8 Hz, 1H, 3-H), 3.87 (ddt, J = 44.1, 13.8, 5.0 Hz, 4H, 33-H, 36-H), 2.79 (dt, J = 13.6, 3.6 Hz, 1H, 1-H), 2.61 (t, J = 5.1 Hz, 4H, 34-H, 35-H), 2.34 (s, 1H, 9-H), 2.30 (d, J = 3.2 Hz, 1H, 18-H), 2.04 (s, 3H, 32-H), 1.11 – 0.96 (m, 2H, 1-H, 15-Hs), 0.87 (s, 6H, 23-H, 24-H), 0.80 (s, 3H, 28-H), 0.77 (d, J = 2.0 Hz, 1H, 5-H) ppm;

13C NMR (101 MHz, CDCl3): δ = 200.0 (C-11), 174.1 (C-30), 171.1 (C-31), 169.5 (C-13), 128.7 (C-12), 80.8 (C-3), 61.8 (C-9), 55.2 (C-5), 48.1 (C-18), 48.1 (C-33, C-36), 45.4 (C-8), 44.3 (C-20), 44.2 (C-19), 43.4 (C-14), 39.0 (C-1), 38.2 (C-4), 38.0 (C-22), 37.1 (C-10), 33.2 (C-21), 32.9 (C-7), 31.9 (C-17), 28.6 (C-28), 28.2 (C-23), 27.8 (C-34, C-35), 27.3 (C-29), 26.9 (C-26, 16-C), 25.7 (C-23, 22-C), 23.4 (C-32), 18.8 (C-26), 17.5 (C-6), 16.8 (C-24), 16.5 (C-25) ppm;

MS (ESI, MeOH): m/z: 598 (100%, [M+H]+); analysis calced for C36H35NO3S (597.39): C 72.32, H 9.27, N 2.34; found: C 72.04, H 9.49, N 2.17.

Following GPA from 2 (400 mg, 0.8 mmol) and thiomorpholine (0.3 mL, 3.0 mmol), 6 (390 mg, 67%) was obtained as a colorless solid; m.p. 231–233°C; Rf = 0.36 (SiO2, toluene/EtOAc/heptane/HCOOH, 80:26:10:5); [α]D20 = +117.0° (c 0.182, CHCl3); UV-Vis (CHCl3): λmax (log ε) = 248.7 nm (4.13); IR (ATR): ν = 2949w, 1728m, 1656s, 1630m, 1364w, 1244s, 1160m, 1026m, 986w, 958m, 751s, 667w cm⁻¹;

1H NMR (400 MHz, CDCl3): δ = 5.70 (s, 1H, 12-H), 4.51 (dd, J = 11.7, 4.8 Hz, 1H, 3-H), 3.87 (ddt, J = 44.1, 13.8, 5.0 Hz, 4H, 33-H, 36-H), 2.79 (dt, J = 13.6, 3.6 Hz, 1H, 1-H), 2.61 (t, J = 5.1 Hz, 4H, 34-H, 35-H), 2.34 (s, 1H, 9-H), 2.30 (d, J = 3.2 Hz, 1H, 18-H), 2.04 (s, 3H, 32-H), 1.11 – 0.96 (m, 2H, 1-H, 15-Hs), 0.87 (s, 6H, 23-H, 24-H), 0.80 (s, 3H, 28-H), 0.77 (d, J = 2.0 Hz, 1H, 5-H) ppm;
(3β, 20β) 3-Acetoxy-30-(1,4-thiazyepanylidene)-olean-11,29-dione (8)
Following GPA from 2 (400 mg, 0.8 mmol) and homothiophospholin (240 mg, 1.6 mmol), B (330 g, 69%) was obtained as a colorless solid; m.p. 145–148°C; Rf = 0.41 (SiO2, toluene/EtOAc/heptane/HCOOH, 80:20:10:5); [α]D = +104.8° (c 0.163, CHCl3); UV-Vis (CHCl3): λmax (log ε) = 249.9 nm (3.98).

IR (ATR): ν = 2948m, 2837w, 1728m, 1656m, 1619s, 1465v, 1406m, 1365s, 1243m, 1120m, 1027m, 985m, 878w, 751s, 668w cm⁻¹;

1H NMR (500 MHz, CDCl3): δ = 5.75 (s, 1H, 12-H); 4.51 (d, J = 11.7, 4.8 Hz, 1H, 3-H); 3.96 – 3.40 (m, 4H, 33-H, 36-H); 2.86 – 2.76 (m, 3H, 1-H, 34-H); 2.75 – 2.63 (m, 2H, 38-H); 2.46 – 2.34 (m, 2H, 9-H, 18-H); 2.17 – 1.96 (m, 3H, 16-H, 19-H, 21-Ha); 2.04 (s, 3H, 32-H); 1.90 – 1.77 (m, 1H, 15-Ha); 1.77 – 1.38 (m, 12-H, 2-H, 7-Ha, 19-Ha, 6-Hb, 22-Hb, 6-Hb, 7-Hb, 37-H, 21-Ha, 22-Ha); 1.35 (s, 3H, 27-H); 1.23 (s, 3H, 29-H); 1.19 (m, 1H, 16-Hb); 1.15 (s, 3H, 25-H); 1.11 (s, 3H, 26-H); 1.09 – 0.96 (m, 2H, 1-H, 15-Hb); 0.87 (s, 6H, 23-H, 24-H); 0.81 (s, 3H, 28-H), 0.78 (d, J = 2.0 Hz, 1H, 5-H) ppm;

13C NMR (126 MHz, CDCl3): δ = 200.1 (C-11), 175.0 (C-30), 171.1 (C-31), 169.6 (C-13), 128.8 (C-12), 80.8 (C-3), 61.8 (C-9), 55.2 (C-5), 52.0 (C-36), 48.5 (C-33), 48.2 (C-18), 45.4 (C-8), 44.5 (C-20), 44.5 (C-19), 43.5 (C-14), 39.0 (C-1), 38.2 (C-4), 38.2 (C-22), 37.1 (C-10), 33.3 (C-21), 32.9 (C-7), 32.0 (C-17), 28.7 (C-28), 28.2 (C-23), 27.4 (C-29), 27.0 (C-16), 26.6 (C-15), 23.7 (C-2), 23.2 (C-27), 21.4 (C-32), 18.9 (C-26), 17.5 (C-6), 16.8 (C-24), 16.6 (C-25) ppm;

(3β, 20β) 30-(1,4-Diazabicyclo[3.2.2]non-4-yl)-11,30-dioxooolean-12-ene-3-yl acetate (9)
Following GPA from 2 (256 mg, 0.51 mmol) and 1,4-diazabicyclo[3.2.2]nonane (250 mg, 1.24 mmol), 9 (244 mg, 78%) was obtained as a colorless solid; m.p. 275–278°C (lit.: 276–279°C); [α]D = +29.3° (c 0.20, CHCl3) [lit.: [α]D = +28.8° (c 0.15, CHCl3)];

MS (ESI, MeOH): m/z = 622 (50%, [M + H]+), 654 (95%, [M + CH3OH + H]+), 1242 (100%, [2M + H]+).

(3β, 20β) 30-(1,3-Diazabicyclo[3.2.2]non-3-yl)-11,30-dioxooolean-12-ene-3-yl acetate (10)
Following GPA from 2 (245 mg, 0.48 mmol) and 1,3-diazabicyclo[3.2.2]nonane (250 mg, 1.24 mmol), 10 (276 mg, 99%) was obtained as a colorless solid; m.p. 156–159°C (lit.: 156–160°C); [α]D = +85.3° (c 0.25, CHCl3) [lit.: [α]D = +84.6° (c 0.11, CHCl3)];

MS (ESI, MeOH): m/z = 621.3 (100%, [M + H]+), 622.3 (45%; [M + 2H]+); MS (ESI, MeOH): m/z = 619 (80%, [M-H]+), 620 (35%, [M]).

3β-Acetoxy-30-(1,3-methyl-4-aza-1-azoniabicyclo[3.2.2]non-4-yl)-11,30-dioxooolean-12-ene iodide (11)
This compound was obtained from 9 (168 mg, 0.27 mmol) and Mel (0.25 mL, 1.12 mmol) as an off-white solid (120 mg, 50%); m.p. 201–204°C (lit.: m.p. 205°C (decomp.)); [α]D = + 55.0° (c 0.15, CHCl3) [lit.: [α]D = +56.5° (c 0.10, CHCl3)];

MS (ESI, MeOH): m/z = 635 (100%, [M]+), 636 (40%, [M + H]+).

(3β)Acetoxy-30-(1-methyl-3-aza-1-azoniabicyclo[3.2.2]non-3-yl)-11,30-dioxooolean-12-ene iodide (12)
This compound was obtained from 10 (175 mg, 0.28 mmol) and Mel (0.25 mL, 1.12 mmol) as an off-white solid (170 mg, 80%); m.p. 262–266°C (lit.: m.p. 261–266°C (decomp.)); [α]D = +47.0° (c 0.15, CHCl3) [lit.: [α]D = +48.3° (c 0.161, CHCl3)];

MS (ESI, MeOH): m/z = 635 (100%, [M]+).

(3β, 20β) 3-Acetoxy-11-o xoolean-12-en-29- amide (13)
Following GPA and as previously described as an off-white solid (97%); m.p. 309–312°C (lit.: 312–314°C); [α]D = +121.3° (c 0.4, CHCl3) [lit.: [α]D = +119.05° (c 0.41, CHCl3)];

MS (ESI, MeOH): m/z = 512 (100%, [M+H]+), 534 (50%, [M+Na]+).

(3β, 20β) 20-Amino-3-acetoxy-30-norolean-12-en-11-one (14)
Obtained as previously [52, 53] described as a colorless solid (98%); m.p. 231–234°C (lit.: 235–237°C); [α]D = 80.1° (c 0.5, CHCl3) [lit.: [α]D = 80.5° (c 0.63, CHCl3)];

MS (ESI, MeOH): m/z = 484 (100%, [M+H]+).

References
1- X. Feng, L. Ding, F. Qiu, Potential drug interactions associated with glycyrhrizin and glycyrrhetic acid, Drug Metab. Rev., 2015, 47, 229-238.
4- S.A. Richard, Exploring the pivotal immunomodulatory and anti-inflammatory potentials of glycyrrhizic and glycyrrhetic acids, Mediators Inflammation, 2021.
22- B. Brandes, L. Koch, S. Hoenke, H.P. Deigner, R. Csuk, The presence of a cationic center is not alone decisive for the cytotoxicity of triterpene carboxylic acid amides, Steroids, 2020, 163, 108713.

33-M. Kahnt, A. Loesche, I. Serbian, S. Hoenke, L. Fischer, A. Al-Harrasi, R. Csuk, The cytotoxicity of oleane-n derived aminocarboxamides depends on their aminoaalkyl substituents, Steroids, 2019, 149, 108422.

52-R. Csuk, S. Schwarz, B. Siewert, R. Kluge,

