Cover Image

Elaboration and structural characterization of phosphate glasses with composition 37.5Na2O-25[(1-x)MgO-xNiO]-37.5P2O5 (0≤x≤1)

Laila Lamrous, Redouane Farid, Abdelaziz El Jazouli, Saida Krimi, Mustapha Haddad, Hassane Oudadesse, Said Sebti, Michel Couzi


Phosphate glasses, with molar compositions 37.5Na2O-25[(1-x)MgO-xNiO]-37.5P2O5 (0 ≤ x ≤ 1), have been prepared using the conventional melt quenching technique. The free nickel glass is colorless while the glasses containing nickel are yellow. The effect of Ni2+ ions on structural and physico-chemical properties of these glasses has been investigated by XRD, DTA, EPR, Raman, FTIR spectroscopies and by density and chemical durability measurements. Substitution of Ni2+ for Mg2+ strengthens the glass network, as shown by the decrease of the molar volume, the increase of the glass transition temperature, and the improvement of the chemical durability. This behavior is a consequence of the replacement of Mg-O bonds by more covalent Ni-O bonds. The glass structure consists of tri-phosphate (P3O10) 5- and di-phosphate (P2O7) 4- groups, and Mg/NiO6 octahedra, with Mg-O-P and Ni-O-P linkages.

Full Text:



- J. H. Campbell, T. I. Suratwala, Nd-doped phosphate glasses for high-energy/high-peak-power lasers, J. Non- Cryst. Solids, 2000, 263-264, 318-341.

- S. M. Hsu, S. W. Yung, R. K. Brow, W. L. Hsu, C. C. Lu, F. B. Wu, S. H. Ching, Effect of silver concentration on the silver-activated phosphate glass, Mater. Chem. Phys., 2010, 123, 172-176.

- C. Chen, R. He, Y. Tan, B. Wang, S. Akhmadaliev, S. Zhou, J. R. Vazquez de Aldana, L. Hu. F. Chen, Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femto second laser ablation for guided-wave green and red up conversion emissions, Opt. Mater., 2016, 51, 185-189.

- R. K. Brown, D. R. Tallant, Structural design of sealing glasses, J. Non-Cryst. Solids, 1997, 222, 396-406.

- V. Salih, K. Franks, M. James, G. W. Hastings, J. C. Knowles, I. Olsen, Development of soluble glasses for biomedical use. Part 2: The biological response of human osteoblast cell lines to phosphate-based soluble glasses, J. Mater. Sci. Mater. Med., 2000, 11, 615-620.

- M. Navarro, M. P. Ginebra, J. A. Planell, Cellular response to calcium phosphate glasses with controlled solubility, J. Biomed. Mater. Res., 2003, 67A, 1009-1015.

- K. Franks, V. Salih, J. C. Knowles, I. Olsen, The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system, J. Mater. Sci. Mater. Med., 2002, 13 549-556.

- R. K. Brow, Review: the structure of simple phosphate glasses, J. Non-Cryst. Solids, 2000, 263, 1-28.

- T. Kanazawa, Structural characteristics of MgO-P2O5 glasses, J. Non-Cryst. Solids, 1982, 52, 187-194.

- H. Schlenz, F. Reinauer, R. Glaum, J. Neuefeind, B. Brendebach, J. Hormes, High-energy X-ray diffraction study of Ni-doped sodium metaphosphate glasses, J. Non-Cryst. Solids, 2005, 351, 1014-1019.

- R. Oueslati Omrani, A. Kaoutar, A. El Jazouli, S. Krimi, I. Khattech, M. Jemal, J. J Videau, M. Couzi, Structural and thermochemical properties of sodium magnesium phosphate glasses, J. Alloys Compd., 2015, 632, 766-771.

- J. A. Ribeiro, J. Walker, The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions, Br. J. Pharmacol., 1975, 54, 213-218.

- A. Ghosh, P. Ronner, E. Cheong, P. Khalid, F. M. Matschinsky, The role of ATP and free ADP in metabolic coupling during fuel-stimulated insulin release from islet β-cells in the isolated perfused rat pancreas, J. Biol. Chem., 1991, 266, 22887-22892.

- A. Thulasiramudu, S. Buddhudu, Optical characterization of Mn2+, Ni2+ and Co2+ ions doped zinc-lead borate glasses, J. Quant. Spectrosc. Radiat. Transfer, 2006, 102, 212-227.

- L. Gomathi Devi, N. Kottam, B. Narasimha Murthy, S. Girish Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of aniline blue under UV/solar light, J. Mol. Catal. A: Chem., 2010, 328, 44-52.

- L. Montagne, G. Palavit, R. Delaval, Effect of ZnO on the properties of (100-x)(NaPO3)-xZnO glasses, J. Non-Cryst. Solids, 1998, 223, 43-47.

- R. Oueslati Omrani, S. Krimi, J. J. Videau, I. Khattech, A. El Jazouli, M. Jemal, Structural investigations and calorimetric dissolution of manganese phosphate glasses, J. Non-Cryst. Solids, 2014, 389, 66–71.

- R. Ait Mouss, S. Krimi, B. Glorieux, I. Khattech, M. Couzi, T. Cardinal, A. El Jazouli, Structural characterization and calorimetric dissolution behavior of Na2O-CuO-P2O5 glasses, J. Non-Cryst. Solids, 2016, 452, 144-152.

- R. Oueslati Omrani, S. Krimi, J. J. Videau, I. Khattech, A. El Jazouli, M. Jemal, Structural and thermochemical study of Na2O-ZnO-P2O5 glasses, J. Non-Cryst. Solids, 2014, 390, 5-12.

- F. Delahaye, L. Montagne, G. Palavit, P. Baillif, J. C. Touray, Dissolution of (50-x)Na2O-xCaO-50P2O5 metaphosphate glasses in different saline solutions: Mechanism and kinetic control, Glastech. Ber. Glass Sci. Technol., 1999. 72(5), 161-166.

- N. Iwamoto, Y. Makino, S. Kasahara, State of Fe3+ ion and Fe3+_F

−interaction in calcium fluorosilicate glasses, J. Non-Cryst. Solids, 1983, 55, 113-124.

- R.P. Sreekanth Chakradhar, G. Sivaramaiah, J. Lakshmana Rao, N.O. Gopal, Fe3+ ions in alkali lead tetraborate glasses - an electron paramagnetic resonance and optical study, Spectrochim. Acta, Part A, 2005, 62, 51-57.

- R. V. S. S. N. Ravikumar, A. V. Chandrasekhar, L. Ramamoorthy, B. J. Reddy, Y. P. Reddy, J. Yamauchi, P. S. Rao, Spectroscopic studies of transition metal doped sodium phosphate glasses, J. Alloys Compd., 2004, 364, 176-179.

- H. B. Premkumar, D. V. Sunitha, H. Nagabhushana, S. C. Sharma, B. M. Nagabhushana, C. Shivakumara, J. L. Rao, R. P. S. Chakradhar, Synthesis, characterization, EPR, photo and thermoluminescence properties of YAlO3: Ni2+ nanophosphors, J. Lumin., 2013, 135,105-112.

- J. E. Pemberton, L. Latifzadeh, J. P. Fletcher, S. H. Risbud, Raman spectroscopy of calcium phosphate glasses with varying calcium oxide modifier concentrations, Chem. Mater., 1991, 3, 195-200.

- G. J. Exarhos, Vibrational studies of glass structure and localized interactions, Chapter 11, In: Structure and bonding in non-crystalline solids, Edited by G. E. Walrafen, A. G. Revez, Plenum Press, New York 1986, pp. 203- 2017.

- A. Rulmont, R. Cahay, M. Liegeois-Duychaerts, P. Tarte, Vibrational spectroscopy of phosphates - some general correlations between structure and spectra, Eur. J. Solid State Inorg. Chem., 1991, 28, 207-219.

- C. V. Ramana, A. Ait-Salah, S. Utsunomiya, U. Becker, A. Mauger, F. Gendron, C. M. Julien, Structural characteristics of lithium nickel phosphate studied using analytical electron microscopy and Raman spectroscopy, Chem. Mater., 2006, 18, 3788-3794.

- A. de Andres, J. L. Martinez, Vibrational study of R2BaNiO5 (R=Y, Ho, Er or Tm), NiO6 one-dimensional chains, and Tm2BaNiO5, NiO5 pyramids, Solid State Com., 1992, 82, 931-937.

- E. Libowitzky, Correlation of O-H stretching frequencies and O-H-O hydrogen bond lengths in minerals, Monatsh. Chem., 1999, 130, 1047-1059.



  • There are currently no refbacks.

Copyright (c) 2018 Mediterranean Journal of Chemistry