Cover Image

Triterpenoid cholinesterase inhibitors that might improve gait disturbances in Parkinson's disease patients

Niels V Heise, Jördis-Ann Schüler, Torje E. Orlamünde, Benjamin Brandes, Hans-Peter Deigner, Ahmed Al-Harrasi, René Csuk

Abstract


: Parkinson's disease (PD) is the second most common neurodegenerative disease. Besides rigidity and tremor, patients often suffer from gait disturbance. Treatment with cholinesterase inhibitors (ChEI) has been shown to improve gait speed. Thus, the triterpene acids oleanolic acid and ursolic acid have been used as starting materials for the synthesis of compounds intended to act as inhibitors of the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The parent compounds were acetylated and converted via isocyanates and amines into a series of amides, while the isocyanates were also used as starting materials for the synthesis of several urea derivatives. Screening of the compounds with the cholinesterases showed them to be good to moderate inhibitors, with ursolic acid derived isocyanate being a superior mixed-type dual inhibitor for both enzymes holding Ki values in the low mM concentration range. The data from the experiments parallel the results from molecular modeling calculations. In addition, this compound is remarkably stable in an aqueous solution and undergoes decarboxylative hydrolysis to the corresponding amine only at 50 °C after several hours.

Full Text:

PDF

References


- P. Anand, B. Singh, A review on cholinesterase inhibitors for Alzheimer's disease, Arch. Pharmacal. Res., 2013, 36, 375-399.

- T.H. Ferreira-Vieira, I.M. Guimaraes, F.R. Silva, F.M. Ribeiro, Alzheimer's disease: Targeting the cholinergic system, Curr. Neuropharmacol., 2016, 14, 101-115.

- J. Grutzendler, J.C. Morris, Cholinesterase inhibitors for Alzheimer's disease, Drugs, 2001, 61, 41-52.

- P. Kasa, Z. Rakonczay, K. Gulya, The cholinergic system in Alzheimer's disease, Prog. Neurobiol. (Oxford), 1997, 52, 511-535.

- A. Lleo, S.M. Greenberg, J.H. Growdon, Current pharmacotherapy for Alzheimer's disease, Annu. Rev. Med., 2006, 57, 513-533.

- V.N. Talesa, Acetylcholinesterase in Alzheimer's disease, Mech. Ageing Dev., 2001, 122, 1961-1969.

- M. Bortolami, D. Rocco, A. Messore, R. Di Santo, R. Costi, V.N. Madia, L. Scipione, F. Pandolfi, Acetylcholinesterase inhibitors for the treatment of Alzheimer's disease - a patent review (2016-present), Expert Opin. Ther. Pat., 2021, 31, 399-420.

- G. Marucci, M. Buccioni, D.d. Ben, C. Lambertucci, R. Volpini, F. Amenta, Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease, Neuropharmacology, 2021, 190, 108352.

- T. Noori, A.R. Dehpour, A. Sureda, E. Sobarzo-Sanchez, S. Shirooie, Role of natural products for the treatment of Alzheimer's disease, Eur. J. Pharmacol., 2021, 898, 173974.

- D.J. Selkoe, Treatments for Alzheimer's disease emerge, Science, 2021, 373, 624-626.

- S. Srivastava, R. Ahmad, S.K. Khare, Alzheimer's disease and its treatment by different approaches: A review, Eur. J. Med. Chem., 2021, 216, 113320.

- S.M. Uddin, A. Al Mamun, T.M. Kabir, G.M. Ashraf, M.N. Bin-Jumah, M.M. Abdel-Daim, Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets, Mol. Neurobiol., 2021, 58, 281-303.

- M.J. Armstrong, M.S. Okun, Diagnosis and Treatment of Parkinson Disease: A Review, JAMA, 2020, 323, 548-560.

- R. Balestrino, A.H.V. Schapira, Parkinson disease, Eur. J. Neurol., 2020, 27, 27-42.

- B.R. Bloem, M.S. Okun, C. Klein, Parkinson's disease, Lancet, 2021, 397, 2284-2303.

- A.B. Malpartida, M. Williamson, D.P. Narendra, R. Wade-Martins, B.J. Ryan, Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy, Trends Biochem. Sci., 2021, 46, 329-343.

- J.H. Chen, T.W. Huang, C.T. Hong, Cholinesterase inhibitors for gait, balance, and fall in Parkinson disease: a meta-analysis, Npj Parkinsons Dis., 2021, 7, 103.

- N. Heise, S. Friedrich, V. Temml, D. Schuster, B. Siewert, R. Csuk, N-methylated diazabicyclo[3.2.2]nonane substituted triterpenoic acids are excellent, hyperbolic and selective inhibitors for butyrylcholinesterase, Eur. J. Med. Chem., 2022, 227, 113947.

- N.V. Heise, D. Ströhl, T. Schmidt, R. Csuk, Stable triterpenoid iminium salts and their activity as inhibitors of butyrylcholinesterase,

J. Mol. Struct., 2022, 1249,131646.

- L. Heller, M. Kahnt, A. Loesche, P. Grabandt, S. Schwarz, W. Brandt, R. Csuk, Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase, Eur. J. Med. Chem., 2017, 126, 652-668.

- L. Heller, S. Schwarz, A. Obernauer, R. Csuk, Allobetulin derived seco-oleananedicarboxylates act as inhibitors of acetylcholinesterase, Bioorg. Med. Chem. Lett., 2015, 25, 2654-2656.

- L. Heller, S. Schwarz, B.A. Weber, R. Csuk, Gypsogenin Derivatives: An Unexpected Class of Inhibitors of Cholinesterases, Arch. Pharm., 2014, 347, 707-716.

- O. Kazakova, I. Smirnova, T. Lopatina, G.N. Giniyatullina, A. Petrova, E. Khusnutdinova, R. Csuk, I. Serbian, A. Loesche, Synthesis and cholinesterase inhibiting potential of A-ring azepano- and 3-amino-3,4-seco-triterpenoids, Bioorg. Chem., 2020, 101, 104001.

- A. Loesche, M. Kahnt, I. Serbian, W. Brandt, R. Csuk, Triterpene-based carboxamides act as good inhibitors of butyrylcholinesterase, Molecules, 2019, 24, 941.

- A. Loesche, A. Koewitsch, S.D. Lucas, Z. Al-Halabi, W. Sippl, A. Al-Harrasi, R. Csuk, Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential, Bioorg. Chem., 2019, 85, 23-32.

- A. Loesche, J. Wiemann, M. Rohmer, W. Brandt, R. Csuk, Novel 12-hydroxydehydroabietylamine derivatives act as potent and selective butyrylcholinesterase inhibitors, Bioorg. Chem., 2019, 90, 103092.

- S. Schwarz, A. Loesche, S.D. Lucas, S. Sommerwerk, I. Serbian, B. Siewert, E. Pianowski, R. Csuk, Converting maslinic acid into an effective inhibitor of acylcholinesterases, Eur. J. Med. Chem., 2015, 103, 438-445.

- S. Schwarz, S.D. Lucas, S. Sommerwerk, R. Csuk, Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases, Bioorg. Med. Chem., 2014, 22, 3370-3378.

- I.E. Smirnova, O.B. Kazakova, A. Loesche, S. Hoenke, R. Csuk, Evaluation of cholinesterase inhibitory activity and cytotoxicity of synthetic derivatives of di- and triterpene metabolites from Pinus silvestris and Dipterocarpus alatus resins, Med. Chem. Res., 2020, 29, 1478-1485.

- J. Wiemann, A. Loesche, R. Csuk, Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase, Bioorg. Chem., 2017, 74, 145-157.

- A. Martinez, A. Castro, Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer's disease, Expert Opin. Investig. Drugs, 2006, 15, 1-12.

- G.A. Patani, E.J. LaVoie, Bioisosterism:  A Rational Approach in Drug Design, Chem. Rev., 1996, 96, 3147-3176.

- S. Darvesh, R.S. McDonald, A. Penwell, S. Conrad, K.V. Darwesh, D. Mataija, G. Gomez, A. Caines, R. Walsh, E. Martin, Structure-activity relationships for inhibition of human cholinesterases by alkyl amide phenothiazine derivatives, Bioorg. Med. Chem., 2005, 13, 211-222.

- A.K. Gosh, M. Brindisi, Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry, J. Med. Chem., 2019, 63, 2751-2788.

- B. Brandes, S. Hoenke, L. Fischer, R. Csuk, Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids, Eur. J. Med. Chem., 2020, 185, 111858.

- S. Braverman, M. Cherkinsky, M.L. Birsa, Carbon dioxide, carbonyl sulfide, carbon disulfide, isocyanates, isothiocyanates, carbodiimides, and their selenium, tellurium, and phosphorus analogues, Sci. Synth., 2005, 18, 65-320.

- S.M. Jain, C.K. Atal, Synthesis of amino derivatives of ursolic acid, Indian J. Chem., Sect. B, 1986, 25B, 427-428.




DOI: http://dx.doi.org/10.13171/mjc02211021650csuk

Copyright (c) 2022 Mediterranean Journal of Chemistry