Cover Image

Microdetection of Chromium Mixed–Valences using CuNi/Ti Electrode and Linear Sweep Voltammetry

Nirwan Syarif M.Si

Abstract


An electrode of non-precious metal has the potency to be utilized as a working electrode for voltammetry measurements of Cr3+ and Cr6+.  The analytical performance of the electrode in determining specific metal species qualitatively and quantitatively was studied. The detection data were recorded and analyzed using cyclic voltammetry (CV) and linear sweep voltammetry (LSV), whereas scanning electron microscope (SEM) and X-ray diffraction (XRD) spectroscopy were used to determine the surface morphology and the presence of crystalline in the electrode. Electroanalytical performance was determined by linear sweep voltammetry. The results show that the reduction of Cr6+ to Cr3+ appeared at +0.84 V (vs Ag/AgCl) and the reduction of Cr3+ to Cr2+ at +0.74 V             (vs Ag/Ag).  The optimum conditions for measuring Cr3+ were found at pH 6, deposition time of 30 seconds, and a scan rate of 160 mVs-1. The optimum pH for measuring Cr6+ is 4, deposition time of 60 seconds, and a scan rate of 140 mVs-1. The regression curve for the Cr3+ is linear in concentration 1 – 10 gL-1 with a correlation coefficient of  0.9883 and a detection limit of 2.08 gL-1. While the Cr6+ is linear in the range of 1 – 10 gL-1 with a correlation coefficient of 0.99 and a detection limit of 2.18 gL-1. There is a slight difference in the individual measurement current and the mixture of Cr3+ and Cr6+ but with a good agreement for the oxidation-reduction potential. The measurement data analysis shows the feasibility of the electrode and the measurement system developed.

Full Text:

PDF

References


- A. Chait, L. J. den Hartigh, Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease, Front. Cardiovasc. Med., 2020, 7, 22.

- E. Sawicka, K. Jurkowska, A. Piwowar, Chromium (III) and chromium (VI) as important players in the induction of genotoxicity–current view, Ann. Agric. Environ. Med., 2021, 28, 1.

- A. M. de O. Lopes, P. R. Chellini, R. A. de Sousa, Cadmium and Chromium Determination in Herbal Tinctures Employing Direct Analysis by Graphite Furnace Atomic Absorption Spectrometry (GF-AAS), Anal. Lett., 2020, 53, 2096-2110.

- E. Tsanaktsidou, G. Zachariadis, Titanium and Chromium Determination in Feedstuffs Using ICP-AES Technique, Separations, 2019, 7, 1.

- J. B. Vera, M. C. Bisinoti, C. D. B. Amaral, M. H. Gonzalez, ICP- quadrupole MS for accurate determination of chromium in environmental and food matrices, Environ. Nanotechnol. Monit. Manag., 2021, 15, 100421.

- A. Ait sidi mou, A. Ouarzane, M. El Rhazi, Detection of mercury by a new sensor-based CPE modified with extract of takaout plant, Mediterr. J. Chem., 2016, 5, 514–520.

- N. M. Thanh, N. D. Luyen, T. Thanh Tam Toan, N. Hai Phong, N. Van Hop, Voltammetry Determination of Pb(II), Cd(II), and Zn(II) at Bismuth Film Electrode Combined with 8-Hydroxyquinoline as a Complexing Agent, J. Anal. Methods. Chem., 2019, 2019, 1.

- J. Barón-Jaimez, M. R. Joya, J. Barba-Ortega, Anodic stripping voltammetry–ASV for determination of heavy metals, J. Phys. Conf. Ser., 2013, 466, 012023.

- S. T. Palisoc, R. I. M. Vitto, M. G. Noel, K. T. Palisoc, M. T. Natividad, Highly sensitive determination of heavy metals in water prior to and after remediation using Citrofortunella Microcarpa, Sci. Rep., 2021, 11, 1-14.

- Y. Liu, J. Liu, J. Liu, W. Gan, B. Ye, Y. Li, Highly sensitive and selective voltammetric determination of dopamine using a gold electrode modified with a molecularly imprinted polymeric film immobilized on flaked hollow nickel nanospheres, Microchim. Acta, 2017, 184,

-1294.

- J. Lalmalsawmi, Zirlianngura, D. Tiwari, S. M. Lee, Low cost, highly sensitive and selective electrochemical detection of arsenic (III) using silane grafted based nanocomposite, Environ. Eng. Res., 2019, 25, 579.

- H. Suyani, I. Rahmi, H. Pardi, Optimization for the Simultaneous Determination of Zinc in Environmental Samples With Calcon by Adsorptive Stripping Voltammetry : Response Surface Methodology, Orient. J. Chem., 2017, 33, 2060.

- C. M. Welch, R. G. Compton, The use of nanoparticles in electroanalysis: a review, Anal. Bioanal. Chem., 2006, 384, 601-619.

- Y. B. Vogel, J. J. Gooding, S. Ciampi, Light-addressable electrochemistry at semiconductor electrodes: redox imaging, mask-free lithography and spatially resolved chemical and biological sensing, Chem. Soc. Rev., 2019, 48, 3723-3739.

- D. M. Heard, A. J. J. Lennox, Electrode Materials in Modern Organic Electrochemistry, Angew. Chem., 2020, 132, 18866-18884.

- G. E. Badea, C. Antal, M. Rosca, A. Setel, Autocatalytic Reduction of Cr(VI) on Platinum Electrode in Acid Solution, Rev. Roum. Chim., 2012, 57, 29–33.

- W. Liu, G. Liu, S. Xiao, J. Zhang, The Electrochemical Behavior of Cr(II) Ions in NaCl-KCl Melt, Int. J. Electrochem. Sci., 2017, 1589-1599.

- L. Dunyushkina, A. Pavlovich, A. Khaliullina, Activation of Porous Pt Electrodes Deposited on YSZ Electrolyte by Nitric Acid Treatment, Materials, 2021, 14, 5463.

- M. A. Ehsan, M. H. Suliman, A. Rehman, A. S. Hakeem, A. Al Ghanim, M. Qamar, Fabrication of platinum thin films for ultra-high electrocatalytic hydrogen evolution reaction, Int. J. Hydrog. Energy., 2020, 45, 15076-15085.

- W. Wu, Z. Chen, B. Li, X. Cong, Q. Chen, Mechanical and electrochemical properties of platinum coating by double glow plasma on titanium alloy substrate, Russ. J. Electrochem., 2013, 49, 76–80.

- J. H. O. J. Wijenberg, A. C. A. de Vooys, R. Kortlever, M. T. M. Koper, Oxidation reactions in chromium(III) formate electrolytes at platinum and at a catalytic mixed metal oxide coating of iridium oxide and tantalum oxide, Electrochimica Acta, 2016, 213, 194–200.

- T. A. F. Appia, L. Ouattara, Electrooxidation of simulated wastewater containing pharmaceutical amoxicillin on thermally prepared IrO2/Ti, Mediterr. J. Chem., 2021, 11, 172-184.

- M. Ouakki, A. El Fazazi, M. Cherkaoui, Electrochemical deposition of Zinc on mild steel, Mediterr. J. Chem., 2019, 8, 30–41.

- A. R. Baqer, A. A. Beddai, M. M. Farhan, B. A. Badday, M. K. Mejbel, Efficient coating of titanium composite electrodes with various metal oxides for electrochemical removal of ammonia, Results Eng., 2021, 9, 100199.

- H. H. Hasan, I. H. A. Badr, H. T. M. Abdel-Fatah, E. M. S. Elfeky, A. M. Abdel-Aziz, Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film, Arab. J. Chem., 2018, 112, 172-180.

- A. A. Korda, S. Munawaroh, E. A. Basuki, The Antimicrobial Activity and Characterization of the Cast Titanium Copper Alloys with Variations of Copper Content, IOP Conf. Ser. Mater. Sci. Eng., 2019, 547, 012002.

- G. Wilhelm Sievers, K. Anklam, R. Henkel, T. Hickmann, V. Brüser, Corrosion-protection of moulded graphite conductive plastic bipolar plates in PEM electrolysis by plasma processing, Int. J. Hydrog. Energy, 2019, 44, 2435–2445.

- F. Saba, E. Garmroudi-Nezhad, F. Zhang, L. Wang, Fabrication, mechanical property and in vitro bioactivity of hierarchical macro-/micro-/nano-porous titanium and titanium molybdenum alloys, J. Mater. Res., 2020, 35, 2597–2609.

- N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, J. Chem. Educ., 2018, 95, 197–206.

- Q. Ge, X. Feng, R. Wang, R. Zheng, S. Luo, L. Duan, Y. Ji, J. Lin, H. Chen, Mixed Redox-Couple-Involved Chalcopyrite Phase CuFeS2 Quantum Dots for Highly Efficient Cr(VI) Removal, Environ. Sci. Technol., 2020, 54,

-8031.

- N. Mehdipour, M. Rezaei, Z. Mahidashti, Influence of glycine additive on corrosion and wear performance of electroplated trivalent chromium coating, Int. J. Miner. Metall. Mater., 2020, 27, 544-554.

- B. Vercelli, S. Crotti, M. Agostini, Voltammetric responses at modified electrodes and aggregation effects of two anticancer molecules: irinotecan and sunitinib, New J. Chem., 2020, 44, 18233-18241.

- S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals, J. Electroanal. Chem. Interfacial Electrochem., 1972, 39, 163–184.

- I. A. Latif, S. H. Merza, Effect of Scan Rate and pH on Determination Amoxilline Using Screen Printed Carbon Electrode Modified with Functionalized Graphene Oxide, Ibn Al-Haitham J. Pure Appl. Sci., 2018, 31, 157–171.

- A. Bobrowski, A. Królicka, R. Bobrowski, Renewable silver amalgam film electrodes in electrochemical stripping analysis-a review, J. Solid State Electrochem., 2016, 20, 3217–3228.

- A. T. Kuhn, C. Y. Chan, pH changes at near-electrode surfaces, J. Appl. Electrochem., 1983, 13, 189.

- A. Goyal, M. T. M. Koper, The Interrelated Effect of Cations and Electrolyte pH on the Hydrogen Evolution Reaction on Gold Electrodes in Alkaline Media, Angew. Chem. Int. Ed., 2021, 60, 13452-13462.

- A. Ganassin, P. Sebastián, V. Climent, W. Schuhmann, A. S. Bandarenka, J. Feliu, On the pH Dependence of the Potential of Maximum Entropy of Ir(111) Electrodes, Sci. Rep., 2017, 7, 1-14.

- X. Guo, A. Liu, J. Lu, X. Niu, M. Jiang, Y. Ma, X. Liu, M. Li, Adsorption Mechanism of Hexavalent Chromium on Biochar: Kinetic, Thermodynamic, and Characterization Studies, ACS Omega, 2020, 5, 27323-27331.

- A. G. Caporale, A. Violante, Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments, Curr. Pollut. Rep., 2016, 2, 15-27.

- M. Tumolo, V. Ancona, D. De Paola, D. Losacco, C. Campanale, C. Massarelli, V. F. Uricchio, Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview, Int. J. Environ. Res. Public Health, 2020, 17, 5438.

- A. A. Bojang, H. S. Wu, Characterization of Electrode Performance in Enzymatic Biofuel Cells Using Cyclic Voltammetry and Electrochemical Impedance Spectroscopy, Catalysts, 2020, 10, 782.

- D. Chicco, M. J. Warrens, G. Jurman, The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, Peer J. Comput. Sci., 2021, 7, e623.

- R. Ismail, H. Y. Lee, N. A. Mahyudin, F. Abu Bakar, Linearity study on detection and quantification limits for the determination of avermectins using linear regression, J. Food Drug Anal., 2014, 22, 407-412.

- M. J. Jorge, M. C. Nilson, H. R. Aracely, F. Machuca-Martínez, Data on the removal of metals (Cr, Cr, Cd, Cu, Ni, Zn) from aqueous solution by adsorption using magnetite particles from electrochemical synthesis, Data Brief, 2019, 24, 103956.

- R. Heydarzadeh, A. A. Ghadimkhani, A. Torabian, An improvement of Cr+6 removal by the reduction to Cr+3 in Birjand groundwater treatment, Water Pollution VIII: Modelling, Monitoring and Management, 2006, 1, 195-202.




DOI: http://dx.doi.org/10.13171/mjc02208201639syarif

Copyright (c) 2022 Mediterranean Journal of Chemistry