Cover Image

Conceptions of Vibrational Signatures Based on Chiral/Helical Functionalized Helicenes Nanostructures: Analyzed of Normal and Identical Modes

Simplice Koudjina, Wilfried G. Kanhounnon, Gaston A. Kpotin, Nobel Kouakou N’Guessan, Guy Y. S. Atohoun

Abstract


Optoelectronics properties as helical molecular fingerprints have been investigated on a set of Helicenes molecules, which form a particular class of compounds and exhibit both π-electron delocalization and chiral properties. In this paper, we investigate the IR and Raman signatures of four representative Helicenes: Hexahilicene (Hexa-Helicene), tetrathia-[7]-helicene (Helicene-4S), and its pyrrole (Helicene-4N) and furan analogs (Helicene-4O), under the visible wavelength of 532 nm. Correctly, the impact of the method of calculation on these signatures has been pointed out. The simulation of the IR and Raman signatures involves two different steps: the evaluation of the vibrational frequencies and normal modes and the calculation of the Cartesian derivatives of electric properties. While most of the time, all the quantities are evaluated with a single method, we believe that this should not be the case since both steps have not the same requirements in terms of computational methods. Density functional theory has been then used with different exchange-correlation functional and Coupled Perturbed Time-Dependent Hartree-Fock (CP-TDHF) for the electric properties investigations. It comes out of the results that B3LYP, B3P86, and PBE0, reproduces better experimental spectra. The impact of the electron correlation as view one the XC functional on the evaluation of the Cartesian derivatives of the electric properties were found to be somewhat limited. Overall, the most crucial point is to have an accurate description of the normal vibrational modes via the choice of appropriate XC functionals, which describe the experiment results.

Full Text:

PDF

References


- R.H. Martin, The Helicenes, Angewandte Chemie International Edition in English, 1974, 13, 649–660.

- C.F. Chen, Y. Shen, Helicene Chemistry, Springer Berlin Heidelberg: Berlin, Heidelberg, 2017.

- J. Barroso, J.L. Cabellos, S. Pan, F. Murillo, X. Zarate, M.A. Fernandez-Herrera, G. Merino, Revisiting the racemization mechanism of helicenes, Chemical Communications, 2018, 54, 188–191.

- J. Autschbach, S. Patchkovskii, T. Ziegler, S.J.A. van Gisbergen, E. Jan Baerends, Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium-sized organic molecules, The Journal of Chemical Physics, 2002, 117, 581–592.

- H. Zhang, H. Liu, C. Shen, F. Gan, X. Su, H. Qiu, B. Yang, P. Yu, Chiral Recognition of Hexahelicene on a Surface via the Forming of Asymmetric Heterochiral Trimers, International Journal of Molecular Sciences, 2019, 20.

- F. Furche, R. Ahlrichs, C. Wachsmann, E. Weber, A. Sobanski, F. Vögtle, S. Grimme, Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory, Journal of the American Chemical Society, 2000, 122, 1717–1724.

- J. Autschbach, T. Ziegler, S.J.A. van Gisbergen, E. J. Baerends, Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules, The Journal of Chemical Physics, 2002, 116, 6930–6940.

- M. Spassova, I. Asselberghs, T. Verbiest, K. Clays, E. Botek, B. Champagne, Theoretical investigation on bridged triarylamine helicenes: UV/visible and circular dichroism spectra, Chemical Physics Letters, 2007, 439, 213–218.

- E. Botek, B. Champagne, Circular dichroism of helical structures using semiempirical methods, The Journal of Chemical Physics, 2007, 127, 204101.

- Y. Nakai, T. Mori, Y. Inoue, Theoretical and Experimental Studies on Circular Dichroism of Carbo[ n ]helicenes, The Journal of Physical Chemistry A, 2012, 116, 7372–7385.

- Y. Nakai, T. Mori, Y. Inoue, Circular Dichroism of (Di)methyl- and Diaza[6]helicenes. A Combined Theoretical and Experimental Study, The Journal of Physical Chemistry A, 2013, 117, 83–93.

- T. Bürgi, A. Urakawa, B. Behzadi, K.H. Ernst, A. Baiker, The absolute configuration of heptahelicene: aVCD spectroscopy study, New J Chem., 2004, 28, 332–334.

- V.P. Nicu, J. Neugebauer, S.K. Wolff, E.J. Baerends, A vibrational circular dichroism implementation within a Slater-type-orbital based density functional framework and its application to Hexa- and hepta-helicenes, Theoretical Chemistry Accounts, 2008, 119, 245–263.

- M. Kurban, Electronic structure, optical and structural properties of Si, Ni, B, and N-doped a carbon nanotube: DFT study, Optik, 2018, 172, 295–301.

- S. Abbate, F. Lebon, G. Longhi, F. Fontana, T. Caronna, D.A. Lightner, Experimental and calculated vibrational and electronic circular dichroism spectra of 2-Br-hexahelicene, Physical Chemistry Chemical Physics, 2009, 11, 9039.

- V. Liégeois, B. Champagne, Vibrational Raman optical activity of π-conjugated helical systems: Hexahelicene and heterohelicenes, Journal of Computational Chemistry, 2009, 30, 1261–1278.

- C. Johannessen, E.W. Blanch, C. Villani, S. Abbate, G. Longhi, N.R. Agarwal, M. Tommasini, D.A. Lightner, Raman and ROA Spectra of (−)- and (+)-2-Br-Hexahelicene: Experimental and DFT Studies of a π-Conjugated Chiral System, The Journal of Physical Chemistry B, 2013, 117, 2221–2230.

- S. Abbate, G. Longhi, F. Lebon, E. Castiglioni, S. Superchi, L. Pisani, F. Fontana, F. Torricelli, T. Caronna, C. Villani, R. Sabia, M. Tommasini, A. Lucotti, D. Mendola, A. Mele, D.A. Lightner, Helical Sense-Responsive and Substituent-Sensitive Features in Vibrational and Electronic Circular Dichroism, in Circularly Polarized Luminescence, and in Raman Spectra of Some Simple Optically Active Hexahelicenes, The Journal of Physical Chemistry C, 2014, 118, 1682–1695.

- W.J. Hehre, R. Ditchfield, J.A. Pople, Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, The Journal of Chemical Physics, 1972, 56, 2257–2261.

- T.H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics, 1989, 90, 1007–1023.

- A. Komornicki, G. Fitzgerald, Molecular gradients, and hessians implemented in density functional theory, The Journal of Chemical Physics, 1993, 98, 1398–1421.

- A.P. Scott, L. Radom, Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, The Journal of Physical Chemistry, 1996, 100, 16502–16513.

- K.K. Irikura, R.D. Johnson, R.N. Kacker, Uncertainties in Scaling Factors for ab Initio Vibrational Frequencies, The Journal of Physical Chemistry A, 2005, 109, 8430–8437.

- M.P. Andersson, P. Uvdal, New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p), The Journal of Physical Chemistry A, 2005, 109, 2937–2941.

- G. Zuber, W. Hug, Rarefied Basis Sets for the Calculation of Optical Tensors. 1. The Importance of Gradients on Hydrogen Atoms for the Raman Scattering Tensor, The Journal of Physical Chemistry A, 2004, 108, 2108–2118.

- A.J. Sadlej, Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties: II. Second-row atoms: Si through Cl, Theoretica Chimica Acta, 1991, 79, 123–140.

- J.P. Merrick, D. Moran, L. Radom, An Evaluation of Harmonic Vibrational Frequency Scale Factors, The Journal of Physical Chemistry A, 2007, 111, 11683–11700.

- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi,

J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg,

S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision D.01, 2013.

- E. Lamparska, V. Liégeois, O. Quinet, B. Champagne, Theoretical Determination of the Vibrational Raman Optical Activity Signatures of Helical Polypropylene Chains, ChemPhysChem, 2006, 7, 2366–2376.

- V. Liégeois, B. Champagne, Implementation in the Pyvib2 program of the localized mode method and application to a helicene, Theoretical Chemistry Accounts, 2012, 131.

- V. Liégeois, O. Quinet, B. Champagne, Investigation of polyethylene helical conformations: Theoretical study by vibrational Raman optical activity, International Journal of Quantum Chemistry, 2006, 106, 3097–3107.

- V. Liégeois, O. Quinet, B. Champagne, Vibrational Raman optical activity as a mean for revealing the helicity of oligosilanes: A quantum chemical investigation, The Journal of Chemical Physics, 2005, 122, 214304.

- L.D. Barron, A.D. Buckingham, Rayleigh, and Raman scattering from optically active molecules, Molecular Physics, 1971, 20,

–1119.

- L.D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. Cambridge University Press, 2004.

- F. Cailliez, P. Pernot, Statistical approaches to forcefield calibration and prediction uncertainty in molecular simulation, The Journal of Chemical Physics, 2011, 134, 054124.

- R.L. Jacobsen, R.D. Johnson, K.K. Irikura, R.N. Kacker, Anharmonic Vibrational Frequency Calculations Are Not Worthwhile for Small Basis Sets, Journal of Chemical Theory and Computation, 2013, 9, 951–954.

- A.D. Buckingham, Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces, Advances in Chemical Physics: Intermolecular Forces, 2007, 107–142.

- C. Baldoli, A. Bossi, C. Giannini, E. Licandro,

S. Maiorana, D. Perdicchia, M. Schiavo, A Novel and Efficient Approach to (Z)-1,2-Bis(benzodithienyl)ethene ­Precursors of Tetrathia[7]helicenes, Synlett, 2005, 1137–1141.

- J. Žádný, P. Velíšek, M. Jakubec, J. Sýkora, V. Církva, J. Storch, Exploration of 9-bromo[7]helicene reactivity, Tetrahedron, 2013, 69, 6213–6218.

- E. Licandro, S. Cauteruccio, D. Dova, Thiahelicenes, Advances in Heterocyclic Chemistry, 2016, 118, 1–46.

- A. Bossi, S. Maiorana, C. Graiff, A. Tiripicchio, E. Licandro, Silyl-Substituted Tetrathia[7]helicenes: Synthesis, X-ray Characterization, and Reactivity, European Journal of Organic Chemistry, 2007, 4499–4509.




DOI: http://dx.doi.org/10.13171/mjc10802008251507sk

Copyright (c) 2020 Mediterranean Journal of Chemistry