Cover Image

Synthesis and photocatalytic activity studies of Silver-Nitrogen co-doped ZnO-Fe2O3 nanocomposites for the degradation of Methylene blue under UV-Visible region

Wondimagegn Kumala


The binary systems of ZnO-Fe2O3 nanocomposites were synthesized by a precipitation method with aqueous solutions of Fe and Zn nitrate, whereas nitrogen-doped ZnO-Fe2O3, silver-doped ZnO-Fe2O3, and silver-nitrogen co-doped ZnO-Fe2O3 nanocomposite were prepared by solid-state reaction. The structure and bandgap of the composites were studied using X-ray diffraction (XRD) and UV-visible diffuse reflectance spectroscopy (UV–vis). An aqueous model pollutant Methylene blue (MB) dye solution was used to evaluate photocatalytic degradation activities of the nanocomposites under visible light irradiation. Doping photocatalyst significantly increased the effectiveness of the photocatalyst in reducing bandgap energy. So 2.05 eV is the lowest energy, which is for Ag/N co-doped ZnO-Fe2O3 photocatalysts. Results of the experiment that involved the photocatalysts revealed that Methylene blue degradations of 45.11%, 47%, 51%, and 64.5% in 180 min under light radiation using ZnO-Fe2O3, Ag-doped ZnO-Fe2O3, N-doped ZnO-Fe2O3, and Ag/N co-doped ZnO-Fe2O3, respectively. The doped photocatalysts were all superior to the undoped ZnO-Fe2O3. The efficiency of Ag/N co-doped ZnO-Fe2O3 photocatalysts was higher on the photodegradation of MB at optimum PH, the load of Methylene blue photocatalyst which is 78%.

Full Text:



- G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 2006, 97, 1061–1085.

- D. I. Petkowicz, R. Brambilla, C. Radtke, C. D. S. da Silva, Z. N. da Rocha, S. B. C. Pergher, J. H. Z. dos Santos, Photodegradation of methylene blue by in situ generated titania supported on a NaA zeolite, Appl. Catal: A, 2009, 357, 125–134.

- U. I. Gaya, A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium oxide: A review of fundamentals, progress, and problems, J. Photochem. Photobiol C., 2008, 9, 1-12.

- J. M. Herrman, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today, 1999, 53, 115-129.

- C. Shifu, Z. Wei, Z. Sujuan, L. Wei, Preparation, characterization, and photocatalytic activity of N-containing ZnO powder, Chem. Eng. J., 2009, 148, 263–269.

- D. Chatterjee, D. Shimanti, A novel visible-light-driven photocatalyst film, MoS2/Ag/TiO2, was synthesized on a glass-fiber, Photochem. Rev., 2005, 6, 186-205.

- S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem., 2004, 108, 19384-19387.

- M. Pera-Titus, V. Garˇcia-Molina, M. B˜anos, J. Gim´enez, S. Esplugas, Appl. Catal B-Environ., 2004, 47, 219-256.

- G. Yang, Z. Yan, T. Xiao, Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity, Appl. Surf. Sci., 2012, 258, 8704–8712.

- D. Sarkar, G. G. Khan, A. K. Singh, K. Mandal, Enhanced electrical, optical, and magnetic properties in multifunctional ZnO-Fe2O3 semiconductor nano-heterostructures by heterojunction engineering, J. Phys. Chem. C., 2012, 116, 23540–23546.

- S. G. Shelar, V. K. Mahajan, G. H. Sonawane, Effect of doping parameters on photocatalytic degradation of methylene blue using Ag-doped ZnO nanocatalyst, SN Applied Sciences, 2020, 2, 1-10.

- M. Zheng, J. Wu, One-step synthesis of nitrogen-doped ZnO nanocrystallites and their properties, Appl. Sur. Sci., 2009, 255, 5656–5661.

- K. Pradeev raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z. Z. Chowdhury, M. R. B. Johan, F. Abdul Aziz, F. R. Rafique, R. T. Selvi, R. R. bala, Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial, 2018, 13, 229.

- I. Fernández-Barahona, L. Gutiérrez, S. Veintemillas-Verdaguer, J. Pellico, M. del Puerto Morales, M. Catala, M. A. del Pozo, J. Ruiz-Cabello, F. Herran, Cu-Doped Extremely Small Iron Oxide Nanoparticles with Large Longitudinal Relaxivity: One-Pot Synthesis and in Vivo Targeted Molecular Imaging, ACS omega, 2019, 4, 2719−2727.

- F. Wei, L. Ni, P. Cui, Preparation and characterization of N–S-codoped TiO2 photocatalyst and its photocatalytic activity., J. Hazard. Mater., 2008, 156, 135–140.

- M. L. Maya-Treviñoa, J. L. Guzmán-Mara, L. Hinojosa-Reyesa, N. A. Ramos-Del gadoa, M. I. Maldonadob, A. Hernández-Ramíreza, Activity of the ZnO–Fe2O3 catalyst on the degradation of dicamba and 2,4-D

herbicides using simulated solar light, Ceram. Int., 2014, 40, 8701–8708.

- Y. Huang, X. Zheng, Y. Zhongyi, T. Feng, F. Beibei, H. Keshan, Preparation of Nitrogen-doped TiO2 Nanoparticle Catalyst and Its Catalytic Activity under Visible Light, Inter. J. of Photoenergy, 2007, 802-807.

- V. Mirkhani, S. Tangestaninejad, M. Moghadam, Photocatalytic degradation of azo dyes catalyzed by Ag-doped TiO2 photocatalyst, J Iran Chem Soc., 2009, 6, 578–587.

- R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light, Mater. Chem. Phys., 2011, 125, 277–280.

- J. Zhang, K. Yu, L. Lou, C. Ma, L. Liao, M. Yi, S. Liu, Visible-Light Photocatalytic Activity of Ag3PO4 with Different Particle Sizes for the Degradation of Bisphenol A in Water, Disaster Adv., 2013, 6, 109-117.

- J. Cao, B. D. Luo, B. Xu, S. Chen, Aluminum salt slage characterization and utilization. A review article, Journal of Hazardous Materials, 2012, 217, 1-10.

- Mark Kosmulski, “Chemical Properties of Material Surface “’ Marcel Derker Inc, New York, Basel, 2001.

- R. J. Davis, J. L. Gainer, G. O. Neal, I. W. Wu, PhotocatalyticDecolorization of Wastewater Dyes, Water Environ. Res., 1994, 66, 50–53.

- G. A. Epling, C. Lin, Photo assisted bleaching of dyes utilizing TiO2 and visible light, Chemosphere, 2002, 46, 561-570.

- S. Lodha, D.Vaya, R. Ameta, P. Punjabi, Photocatalytic degradation of Phenol Red using complexes of some transition metal and hydrogen peroxide, Journal Chemical Society., 2008, 73, 631-63.

- M. Qamar, M. Muneer, Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid, and indole-3-butyric acid in aqueous suspensions of titanium, Journal of Hazardous Materials, 2005, 120, 219-227.

- A. Burns, W. Li, C. Baker, S. I. Shah, Sol-gel synthesis and characterization of neodymium-ion doped nanostructured titania thin film. Mater, Journal of material science, 2001, 703, 193–198.

- X. Chen, S. S. Mao, Titanium dioxide nonmaterial: synthesis, properties, modifications, and applications, Chemical Reviews, 2007, 107, 2891–2959.

- D. W. Bahnemann, Mechanisms of organic transformations on semiconductor particles, Photochemical Conversion and Storage of Solar Energy, 1991, 251-276.



  • There are currently no refbacks.

Copyright (c) 2020 Mediterranean Journal of Chemistry