Cover Image

The use of experimental design methodology in the formulation of a new additive for the dispersion of elemental sulfur in triple superphosphate fertilizer

Asmae El Agri, Anass Hafnaoui, Mehdi Khouloud, Mohammed Senhaji Lakehal, Mohammed El Asri, Abdeslem Meliani

Abstract


Yields improvement of the crop depends on many parameters witch each of them acts for a specific manner to boost the plant growth and allow the soil to be more efficient to any kind of plant.  Our research is based on the implementation of elemental sulfur into the preparation of triple superphosphate fertilizer and its dispersion into the blend. By adding a small amount of it to the mixture, sulfur particles disperse uniformly by using additives in the phosphate fertilizer.

This technique is successfully reached by integrating many additives obtained from different chemical industries to spread out the sulfur particle in the fertilizer.

Several experiments were done by adopting the experimental design methodology (DOE) related to a screening mixture design to select the best surfactant used. So, nine commercial products with different chemical proprieties have been evaluated as a dispersant of elemental sulfur in triple superphosphate fertilizer. First, thanks to the screening mixture design, three products have been chosen for this formulation. Second, by using the mixture design method, new dispersants of elemental sulfur in triple superphosphate fertilizer have been reached. With this method, apart from it is being possible to obtain several dispersants, it is also possible to control the distribution and the average of the particle diameter of the elemental sulfur. Moreover, statistical validation tests confirm the achievement of the sulfur particle size of approximately 1000 µm.


Full Text:

PDF

References


- A. R. Lucheta, M. R. Lambais, Revisão de literatura-Sulfur in Agriculture, R Bras Ci Solo, 2012, 36, 1369–1379.

- R. C. Silva, M. J. Mclaughlin, Effect of co-granulation on oxidation of elemental sulfur: a theoretical model and experimental validation, Soil Sci Soc Am J. 2016, 80, 1244–1253.

- J. R. Freney, Oxidation of sulfur in soils, Miner Depos. 1967, 2, 181–187.

- Y. M. Nor, M. A. Tabatabai, Oxidation of elemental sulfur in soils, Soil Sci Soc Am J. 1977, 41, 736–741.

- H. H. Janzen, J. R. Bettany, Measurement of sulfur oxidation in soils, Soil Sci. 1987, 143, 444–452.

- M. Wainwright, Sulfur oxidation in soils, Adv Agron. 1984, 37, 349–396.

- E. D. Solberg, S. S. Malhi, M. Nyborg, K. S. Gill, B. Henriquez, Source, application method, and cultivation effects on recovery of elemental sulfur as sulfate‐S in incubated soils, Commun Soil Sci Plant Anal. 2005, 36, 847–862.

- K. G. Vogler, W. W. Umbreit, The necessity for direct contact in sulfur oxidation by thiobacillus thiooxidans, Soil Sci. 1941, 51, 331–338.

- J. J. Germida, H. H. Janzen, Factors affecting the oxidation of elemental sulfur in soils, Fertil Research, 1993, 35, 101–114.

- S. H. Chien, L. A. Teixeira, H. Cantarella, G. W. Rehm, C. A. Grant, M. M. Gearhart, Agronomic effectiveness of granular nitrogen/phosphorus fertilizers containing elemental sulfur with and without ammonium sulfate: a review, Agron J, 2016, 108, 1203–1213.

- M. Liebscher, A. Lange, C. Schrofl, R. Fuge, V. Mechtcherine, J. Plank, A. Leonhardt, Impact of the molecular architecture of polycarboxylate superplasticizers on the dispersion of multi-walled carbon nanotubes in the aqueous phase, J Mater Sci. 2016, 52, 2296–2307.

- L. Jiang, L. Gao, J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes, J Colloid Interface Sci. 2003, 260, 89–94.

- R. M. Fernandes, M. Buzaglo, M. Shtein, I. P. Bar, O. Regev, E. F. Marques, I. Furo, Lateral diffusion of dispersing molecules on nanotubes as probed by NMR, J Phys Chem. 2014, 118, 582–589.

- H. Ju, Y. Jiang, T. Geng, Y. Wang, A green and easy synthesis method of catanionic surfactant ammonium benzenesulfonate and its surface properties and aggregation behaviors, J Mol Liq. 2018, 264, 306–313.

- A. Ali, M. Rashid, A. Low, N. Ekmi, A review on recent developments in the adsorption of surfactants from wastewater, J Environ Manage. 2020, 254, 109797.

- M. Mishra, P. Muthuprasanna, K. Surya prabha, P. Sobhita rani, I. A. Satish babu, I. Sarath Chandiran, G. Arunachalam, S. Shalini, Basics and potential applications of surfactants-a review, Int J PharmTech Res. 2009, 1, 1354–1365.

- I. Kurnia, G. Zhang, X. Han, J. Yu, Zwitterionic-anionic surfactant mixture for chemical enhanced oil recovery without alkali, Fuel, 2020, 259, 116236.

- S. Rostamnia, Z. Karimi, M. Ghavidel, Cetyltrimethylammonium bromide- surfactant aqueous micelles as a green and ultra-rapid reactor for synthesis of 5-oxo-2-thioxo-2,5-dihydro-3- thiophene carboxylate derivatives, J Sulfur Chem. 2012, 33, 313–318.

- A. Ayari, H. Mekni, N. Grayaa Jaoued, A. Hedhli, Perfluoroalkyl Epoxides: Synthesis and Conversion into Ionic Surfactants, Mediterr. J. Chem. 2012, 2, 374-381.

- M. O. Iwunze, Interaction of curcumin with berberine hydrochloride in Nanoemulsion, Mediterr J Chem. 2018, 6, 68-74.

- C. P. Allais, K. J. Hutter, R. A. G. Martinez, Process for preparing an emulsion of elemental sulfur particles, Patent N° 9,598,322,21, 2017.

- L. E. Ott, Aqueous sulfur dispersion having reduced corrosive activity toward ferrous metal, Patent N° 4,321, 079, 1982.

- P. Eric, Dispersible sulfur fertilizer pellets, Patent N° WO 2010/118532 A1, 2010.

- P. Zygmunt, T. Henryk, K. Boguslaw, Sulfur fertilizer and granulated sulfur fertilizer manufacturing method, Patent N° WO 2008/024007 A2, 2008.

- J. B. M. Antens, R. A. Garcia Martinez, R. Lambert, J. T. O'brien, M. J. Reynhout, G. M. M. Verbist, Sulfur-containing fertilizers and process for the preparation thereof, Patent N° WO 2010/086395, 2010.

- J. A. Cornell, Experiments with mixtures: designs, models, and the analysis of mixture data, Third Edition, Wiley series, New York, 2002,

-649.

- H. Scheffe, The simplex-centroid design for experiments with mixtures, J R Stat Soc, 1963, 25, 235–263.

- M. A. Bezerra, V. A. Lemos, C. G. Novaes, R. M. de Jesus, H. R. S. Filho, S. A. Araújo, Application of mixture design in analytical chemistry, Microchem J, 2020, 152, 104336.

- J. Jacyna, M. Kordalewska, M. J. Markuszewski, Design of experiments in metabolomics-related studies: An overview, J Pharm Biomed Anal, 2019, 164, 598–606.

- B. Y. Gajera, D. A. Shah, R. H. Dave, Development of an amorphous nanosuspension by sono-precipitation-formulation and process optimization using design of experiment methodology, Int J Pharm. 2019, 559, 348–359.

- M. V. Mancenido, R. Pan, D. C. Montgomery, C. M. Anderson-cook, Comparing D-optimal designs with common mixture experimental designs for logistic regression, Chemom Intell Lab Syst. 2019, 187, 11–18.

- M. Claeys-Bruno, C. Gomes, C. Bruno, M. Sergent, Comparative study of mixture designs for complex phenomena, Chemom Intell Lab Syst. 2018, 178, 65–72.

- M. L. G. Zambrozi, F. T. De Oliveira, P. S. Kaori, R. B. Edward, I. S. Spacino, Statistical mixture design- Principal component determination of synergic solvent interactions for natural product extractions, Chemom Intell Lab Syst. 2010, 103, 1–7.

- K. R. Quinlan, D. K. J. Lin, Run order considerations for Plackett and Burman Designs, J Stat Plan Inference, 2015, 165, 56–62.

- S. Marouane, N. Oumam, A. Abourriche, A. Bennamara, M. Charrouf, Optimization of activated carbon from residues of oregano using experimental design method, Mediterr J Chem. 2012, 1, 210-220.

- B. El Hilal, A. El Harfi, Radioactive wastes Conditioning. Optimization of operating parameters by experience plan method, Mediterr. J. Chem. 2016, 5, 367-373.

- R. D. Snee, D. Marquardt, Screening concepts and designs for experiments with mixtures, Technometrics, 1976, 18, 19–29.

- F. Rispoli, V. Shah, A new efficient mixture screening design for optimization of media, Biotechnol Prog. 2009, 25, 980–985.

- R. P. Niedz, T. J. Evens, Mixture screening and mixture-amount designs to determine plant growth regulator effects on shoot regeneration from grapefruit (Citrus paradisi macf.) epicotyls, Vitr Cell Dev Biol - Plant, 2011, 47, 682–694.

- L. Chen, Z. Zhang, W. Gong, Z. Liang, Quantifying the effects of fuel compositions on GDI-derived particle emissions using the optimal mixture design of experiments, Fuel, 2015, 154, 252–260.

- M. Coronado, A. M. Segadães, A. Andrés, Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes, J Hazard Mater. 2015, 299, 529–539.

- A. Hakam, M. Khouloud, Y. Zeroual, Manufacturing of superphosphates SSP & TSP from downstream phosphates, Procedia Eng. 2012, 46, 154–158.

- A. Fourati, A. Amor, S. Hédi, M. Zid, N. Ammar, M. Loungou, A. Chouaya, M. J. Ncid, Process for producing triple superphosphate (TSP) and complex fertilizers which are granulated, with reaction devices, for granulation-drying, for packaging the product and for treating the waste, Patent N° WO2016043673A1, 2016.

- N. Chaouqi, M. El Gharous, M. Bouzziri, The improvement of TSP fertilizer production & Quality, bioRxiv, 2017.

- C. P. Allais, K. J. Hutter, R. A. Garcia Martinez, Process for preparing an emulsion of elemental sulfur particles, Patent N° WO 2014/009326 A1, 2014.

- M. J. B. Antens, R. A. Garcia Martinez, R. Lambert, J. T. O'brien, M. J. Reynhout, G. L. M. Verbist, Sulfur-Containing fertilizers and process for the preparation thereof, Patent N° WO2010086396A1, 2010.

- B. Dimitrios, Method for coating fertilizer beads with elemental sulfur, Patent N° WO 2017/077350 A1, 2017.

- K. J. Hutter, R. A. Garcia Martinez, Process for preparing an elemental sulfur-containing fertilizer, Patent N° 2429975 B1, 2010.

- K. J. Hutter, I. C. James, R. A. Garcia Martinez, Process for the manufacture of sulfur-containing compositions and sulfur-containing fertilizer compositions, Patent N° WO 2013/098404 A1, 2013.

- S. F. Valle, A. S. Giroto, R. Klaic, G. G. F. Guimar, Sulfur fertilizer based on inverse vulcanization process with soybean oil, Polym Degrad Stab. 2019, 162, 102–105.

- R. D. B. Lefroy, Sholeh, G. Blair, Influence of sulfur and phosphorus placement, and sulfur particle size on elemental sulfur oxidation and the growth response of maize (Zea mays), Aust J Agric Res. 1997, 48, 485–495.

- D. Dhiba, J. Maghnouj, D. Msatef, Procedé de fabrication d’engrais granulés à base de triple superphosphate enrichis en soufre, Patent N° MA 25107NA, 2000.

- M. A. Bezerra, V. A. Lemos, C. G. Novaes, R. M. de Jesus, H. R. S. Filho, S. A. Araujo, J. P. S. Alves, Application of mixture design in analytical chemistry, Microchemical J. 2020, 152, 104336.

- M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, L. A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 2008, 76, 965-977.

- L. J. Saunders, R. A. Russell, D. P. Crabb, The Coefficient of Determination : What determines a useful R2 Statistic?, Letters, 2012, 53, 6830–6832.

- C. G. Novaes, R. T. Yamaki, V. F. de Paula, B. B. do Nascimento Junior, J. A. Barreto, G. S. Valasques, M. A. Bezerra, Otimização de métodos analíticos usando metodologia de superfícies de respostas - Parte II : Variáveis de mistura, Rev Virtual Quim. 2018, 10, 393–420.

- G. Mazerolles, D. Mathieu, R. Phan-Tan-Luu, A. M. Siouffi, Computer-Assisted optimization with Nemrod software, J Chromatogr. 1989, 485, 433–451.




DOI: http://dx.doi.org/10.13171/mjc10602006271453aea

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mediterranean Journal of Chemistry