Cover Image

Physico-Chemical Characterization and Interfacial Electrochemical Properties of Nanoparticles of Anatase-TiO2 Prepared by the Sol-Gel Method

Ikram Daou, Rachid Chfaira, Omar Zegaoui, Zakaria Aouni, Hammou Ahlafi

Abstract


In this work, we prepared by the sol-gel method titanium dioxide nanoparticles having a large specific area (SBET = 218 m2/g). The isotherm of N2 adsorption-desorption at 77K revealed that it concerns a mesoporous solid with a maximum pore diameter of 43 Ã…. The X-ray diffraction showed that the solid is constituted of the anatase phase. The transmission electron microscopy revealed us that the synthesized grains of TiO2 are of nanometric sizes (diameter between 8 and 20 nm) and manifest under agglomerated shape. The study of its solubility in dispersing phase, by conductometric titrations, showed that the prepared solid is totally insoluble in all the domain of the studied pH. The measured inter-facial electrochemical properties, based on the isotherms of ionic adsorption and the conductometric titrations, are: the point of zero charge found equal to 6,2±0,1, the total number of sites of surface found equal to 5,8 OH/nm2 and the nature of action of the dispersed phase on the dispersing phase which is found organizer of the structure of water. Besides, the difference of the ionization constants ï„pK is found superior to 4 for all the adsorbed ions and the constants of surface complexation are independent from the nature of the adsorbed ion.

Full Text:

PDF

References


Y.-F. Chen, Ch-Y. Lee, M.-Y. Yeng and H.-T. Chiu., J. Cryst. Growth, 2003, 247, 363-370.

F. Wuyou, Y. Haibin, C. Lianxia, Hari-Bala, L. Minghua and Z. Guangtian, Colloids and surf. A: Physicochem. Eng. Aspects 2006, 289, 47-52.

U. Dielbold, Surf. Sci. Rep., 2003, 48, 53-229.

H. A. Al-Abadleh and V.H. Grassian, Surf. Sci. Rep., 2003, 52, 63-161.

M. R. Hoffman, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 1995, 95(1), 69-96.

A. L. Linsebigler, G. Lu and J. T.Yates, Chem. Rev., 1995, 95(3), 735-758.

M. I. Litter, Appl. Catal. B: Environ, 1999, 23, 89-114.

K. Wilke and H.D. Breuer, J. Photochem. Photobiol. A, 1999,121 (1), 49-53.

I. Justicia, G. Garcia, L. Vázquez, J. Santiso, P. Ordejón, G. Battiston, R. Gerbasi and A. Figueras, Sensor and Actuator B: Chemical, 2005, 109, 52-56.

A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1, 1.

C. Chen, X. Li, W. Ma, J. Zhao, H. Hidaka and N. Serpone, J. Phys. Chem. B, 2002, 106, 318-324.

X. Liu, Powder Technology, 2012, 224, 287–290

N. Negishi and K. Takeuchi, J. Sol–Gel Sci. Technol., 2001, 22, 23-31.

B. Souvereyns, K. Elen, C. De Dobbelaere, A. Kelchtermans, N. Peys, J. D’Haen, M. Mertens, S. Mullens, H. Van den Rul, V. Meynen, P. Cool, A. Hardy and M.K. Van Bael, Chemical Engineering Journal, 2013, 223,135–144

J. Lützenkirchen, J. F. Boily, L. Lovgren, and S. Sjoberg, Geochim. Cosmochim. Acta 2002, 66, 3389–3396.

J. Lützenkirchen, J. Colloid Interface Sci., 2005, 290, 489–497.

T. Ivanova, A. Harizanova, T. Koutzarova and B. Vertruyen; Journal of Non-Crystalline Solids, 2011, 357, 2840–2845.

V. G. Erkov, S. F. Devyatova, E. L. Molodsova, T. V. Malsteva and U. A. Yanovski, Appl. Surf. Sci., 2000, 166, 51-56.

J.-Y. Zhang, I. W. Boyd, B. J. O’Sullivan, P.K. Hurley, P. V. Kelly and J. P-. Sénateur, J. Non-Cryst. Sol., 2002, 303, 134-138.

G. Hausinger, H. Schmelz and H. Knözinger, Appl. Catal., 1988, 39, 267-283.

A. Ranga Rao and V. Dutta, Sol. Energy Mater. and Sol. Cells, 2007, 9, 1075-1080.

T. Yoko, K. Kamiya and K. Tanaka, J. Mater. Sci., 1990, 25, 3922-3929.

E. Jr. Morgado, M.A.S. de Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim and A.S. Araujo, Chem. Mater., 2007, 19 (4), 665–676.

H. Zou and Y.S. Lin, Appl. Catal. A: General, 2004, 265, 35–42.

S. G. Gregg and K. S.W. Sing, “Adsorption, Surface Area and Porosity 2nd Ed., Academic Press, London, 1982.

M. Bouby, J. Lützenkirchen, K. Dardenne, T. Preocanin, M. A. Denecke, R. Klenze and H. Geckeis, J. Colloid Interface Sci, 2010, 350, 551-561.

T. Preo~anin and N. Kallay, Croat. Chem. Acta, 2006, 79 (1), 95-106.

F. Dumont, P. Verbeiren and C. Buess-Herman Colloids and Surfaces, 1999, A 154, 149-156.

W. Piasecki, P. Zarzycki and R. Charmas, Adsorption, 2010, 16, 295–303.

J. Lyklema, Chemical Physics Letters, 2009, 467, 217–222.

W. Stumm “Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systemsâ€, Wiley Interscience Pub., New York 1992.

C.-P. Huang and W. Stumm, J. Colloid Interface Sci, 1973, 43, 409-420.

J.-Ph. Boisvert , A. Malgat , I. Pochard and C. Daneault. Polymer, 2002, 43, 141-148.

T. E. Payne, Davis, J. A, G.R. Lumpkin, R. Chisari and T. D. Waite, Applied Clay Science, 2004, 26, 151-162.

G.A. Waychunas, C.C. Fuller and J.A. Davis, Geochimica et Cosmochimica Acta, 2002, 66, 1119-1130.

A. Malgat, J.P. Boisvert and C. Daneault , J. Colloid. Interface. Sci, 2004, 269, 320-328

R.J. Hunter in « Fundation of Colloid Science »Volume 1, Ed. Clarendon Press Oxford, 1987, pp. 379-391.

E. Ghenne, F. Dumont andC. Buess-Herman, Colloids and Surfaces 1998, 131, 63-67.

N. Kallay, S. Zalac, J. Colloid. Interface. Sci. 2000, 230, 1-11.




DOI: http://dx.doi.org/10.13171/mjc.2.4.2013.28.07.17

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Mediterranean Journal of Chemistry