Cover Image

A sol-gel synthesis, characterization and in vitro bioactivity of binary, ternary and quaternary bioglasses with high mechanical strength

Sara Bouhazma, Imane Adouar, Sanae Chajri, Smaiel Herradi, Mohamed Khaldi, Abdelkrim Ouammou, Brahim El Bali, Mohammed Mansori, Mohammed Lachkar

Abstract


Bioactive powders of the binary SiO2-CaO, ternary SiO2-CaO-P2O5 and quaternary systems SiO2-CaO-P2O5-Na2O/Mg2O were synthesized using a sol-gel route. The gels were converted into bioglasses powders by heat treatments at the temperature of 700°C. The resulting materials were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Environmental Scanning Electron Microscopy (ESEM) and in vitro bioactivity in acellular Simulated Body Fluid (SBF). The in vitro tests showed that the samples had good apatite-forming ability. Glasses doped with sodium and magnesium show good results in terms of bioactivity and mechanical properties. The results showed that the quaternary glass SiO2-CaO-P2O5-Na2O containing Na is the most bioactive, only 6 hours after its immersion in SBF; a layer of hydroxycarbonated apatite (HAC) was deposited on the glass and compressive strength of up to 233.08 MPa with a porosity of 11.02%, due to the presence of the Na2Ca2Si3O9 phase. Magnesium also affects bioactivity because it has improved from binary to ternary to quaternary doped with magnesium, bioactive from 12h of contact with the SBF.


Full Text:

PDF

References


- F. Baino, G. Novajra, C. Vitale-Brovarone, Bioceramics and scaffolds: A winning combination for tissue Engineering, Front. Bioeng. Biotechnol., 2015, 3, 1-17.

- F. Baino, C. Vitale-Brovarone, Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future, J. Biomed. Mater. Res. A., 2011, 97, 514-535.

- Q. Fu, E. Saiz, A.P. Tomsia, Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration, Acta Biomater., 2011, 7, 3547-3554.

- L. L. Hench, J. R. Jones, Bioactive glasses: Frontiers and challenges, Front. Bioeng. Biotechnol., 2015, 3, 194.

- V. Miguez-Pacheco, L. L. Hench, A. R. Boccaccini, Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues, Acta Biomater., 2015, 13, 1-15.

- F. Baino, G. Novajra, V. Miguez-Pacheco, A. R. Boccaccini, C. Vitale-Brovarone, Bioactive glasses: Special applications outside the skeletal system, J. Non-Cryst. Solids, 2016, 432, 15-30.

- M. Cacciotti, M. Lombardi, A. Bianco, A. Ravaglioli, L. Montanaro, Sol-gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behavior, J. Mater. Sci.: Mater. Med., 2012, 23, 1849-1866.

- H. Zreiqat, C. R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, J. Biomed. Mater. Res., 2002, 62, 175-184.

- Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, N. Matsuura, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion, J. Biomed. Mater. Res., 2002, 62(1), 99-105.

- R. K. Rude, H. E. Gruber, H. J. Norton, L. Y. Wei, A. Frausto, J. Kilburn, Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat, J. Bone, 2005, 37, 211-219.

- R. K. Rude, H. E. Gruber, L.Y. Wei, A. Frausto, B. G. Mills, Magnesium deficiency: effect on bone and mineral metabolism in the mouse, J. Calcif. Tissue Int., 2003, 72, 32-41.

- Q. Z. Chen, I. D. Thompson, A. R. Boccaccini, 45S5 Bioglass (R)-derived glass-ceramic scaffolds for bone tissue engineering, J. Biomater., 2006, 27, 2414-2425.

- H. D. Bao, Z. X. Guo, J. Yu, Effect of electrically inert particulate filler on electrical resistivity of polymer/multi-walled carbon nanotube composites, Polymer, 2008, 49, 3826-3831.

- S. W. Freiman, L. L. Hench, Kinetics of crystallization in Li2O-SiO2 glasses, J. Am. Ceram. Soc., 1968, 51, 382-387.

- R. A. J. Sambell, D. H. Bowen, D. C. Philips, Carbon fiber composites with ceramic and glass matrices, J. Mater. Sci., 1972, 7, 663-666.

- S. Chajri, S. Bouhazma, S. Herradi, H. Barkai, S. Elabed, S. Ibnsouda Koraichi, B. El Bali, M. Lachkar, Studies on preparation and characterization of SiO2-CaO-P2O5 and SiO2-CaO-P2O5-Na2O bioglasses subtituted with ZnO, J. Mater. Environ. Sci., 2016, 7(6), 1882-1897.

- S. Bouhazma, S. Chajri, H. Barkai, S. Elabed, S. Ibnsouda Koraichi, B. El Bali, M. Lachkar, Synthesis, characterization, in vitro bioactivity and wettability of sol-gel derived SiO2-CaO-P2O5 and SiO2-CaO-P2O5-Na2O bioglasses, Mor. J. Chem., 2015, 3, 19-27.

- I. Lebecq, F. Désanglois, A. Leriche, C. Follet-Houttemane, Compositional dependence on the in vitro bioactivity of invertor conventional bioglasses in the Si–Ca–Na–P system, J. Biomed. Mater. Res., 2007, 83A, 156-168.

- C. Duée, F. Désanglois, I. Lebecq, G. Moreau, A. Leriche, C. Follet-Houttemane, Mixture design applied to glass bioactivity evaluation in the Si–Ca–Na system, J. Non-Cryst. Solids, 2009, 355, 943-950.

- A. Tilocca, Models of structure, dynamics and reactivity of bioglasses: A Review, J. Mater. Chem., 2010, 20, 6848-6858.

- A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri, M. Karimi, Synthesis, characterization and in vitro bioactivity of sol-gel derived SiO2-CaO-P2O5-MgO bioglass, J. Mater. Sci. Eng., 2009, C 29, 335-340.

- T. Kokubo, H. Takadam, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials., 2006, 27, 2907-2915.

- ISO 23317, Implants for Surgery. In Vitro Evaluation for Apatite-forming Ability of Implant Materials., 2007.

- J. R. Jones, Review of bioactive glass: From Hench to hybrids, Acta Biomater., 2013, 9, 4457-4486.

- A. A. El-Rashidy, J. A. Roether, L. Harhaus, U. Kneser, A. R. Boccaccini, Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models, Acta Biomater., 2017, 62, 1-28.

- N. Li, R. Wang, Macroporous sol-gel bioglasses scaffold with high compressive strength, porosity and specific surface area, Ceramics International., 2012, 38, 6889-6893.

- Q. Z. Chen, G. A. Thouas, Fabrication and characterization of sol-gel derived 45S5 Bioglass-ceramic scaffolds, Acta Biomater., 2011, 7, 3616-3626.

- G. Arthur, Porosity and permeability changes during the sintering of copper powder, J. Inst. Met., 1955, 83, 329-336.

- S.Y. Ni, J. Chang, L. Chou, A novel bioactive porous CaSiO3 scaffold for bone tissue engineering, J. Biomed. Mater. Res., 76, 2006, 196-205.

- A. B. Y. Hazar, Preparation and in vitro bioactivity of CaSiO3 powders, Ceram. Int., 2007, 33, 687-692.

- I. Cacciotti, Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties, J. Mater. Sci., 2017, 52, 1-20.

- E. Dietrich, H. Oudadesse, A. Lucas-Girot, M. Mami, In vitro bioactivity of melt derived glass 46S6 doped with magnesium, J. Biomed. Mater. Res., 2009, 88A, 1087-1096.

- I. Cacciotti, A. Bianco, High thermally stable Mg-substituted tricalcium phosphate via precipitation, Ceram. Int., 2011, 37, 127-137.

- I. Cacciotti, Cationic and anionic substitutions in hydroxyapatite, Handbook of Bioceramics and Biocomposites, Springer, 2016, 145-211.

- Y. Huang, X. G. Jin, X. L. Zhang, H. L. Sun, J. W. Tu, T. T. Tang, In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration, Biomaterials, 30, 2009, 5041-5048.

- I. Cacciotti, M. Lombardi, A. Bianco, A. Ravaglioli, L. Montanaro, Sol-gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour, J. Mater Sci: Materials in Medicine, 2012, 23, 1849-1866.

- A. Durif, Crystal Chemistry of Condensed Phosphates, Springer Science and Business Media, 2013.

- P. Li, I. Kangasniemi, K. de Groot, T. Kokubo, Bonelike hydroxyapatite induction by gel-derived titania on a titanium substrate, J. Am. Ceram. Soc., 1994, 77, 1307-1312.

- Q. Z. Chen, Li. Yuan, J. Li-Yu, M. W.Q, Julian, A. K. Paul, A new sol-gel process for producing Na2O-containing bioactive glass ceramics, Acta Biomater., 2010, 6, 4143-4153.

- I. Cacciotti, G. Lehmann, A. Camaioni, A. Bianco, AP40 bioactive glass-ceramic by sol-gel synthesis: in vitro dissolution and cell-mediated bioresorption, Key Engineering Materials, 2013, 541, 41-50.

- L. C. Gerhardt, A. R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Mater., 2010, 3, 3867-3910.

- F. Baino, E. Fiume, Elastic Mechanical Properties of 45S5-Based Bioactive Glass-Ceramic Scaffolds, Mater., 2019, 12, 3244.

- C. T. Wu, J. A. Chang, W. Y. Ni, S. Y. Zhai, J. Y. Wang, Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies, J. Biomed. Mater. Res. Part B, 2006, 78, 47-55.

- S. Callcut, J. C. Knowles, Correlation between structure and compressive strength in a reticulate glass-reinforced hydroxyapatite foam, J. Mater. Sci. Mater. Med., 2002, 13, 485-489.




DOI: http://dx.doi.org/10.13171/mjc02004151058ml

Copyright (c) 2020 Mediterranean Journal of Chemistry