Cover Image

Kinetic and thermodynamic adsorption of nickel (II) onto hydroxyapatite prepared from Snakehead (Channa striata) fish bone

Poedji Loekitowati Hariani, Muryati Muryati, Muhammad Said Said


Biomaterial exploration base on solid waste has been an attractive issue, particularly regarding economic and environmental demand. This work aimed to extract hydroxyapatite from snakehead fishbone through precipitation method and used to remove Ni(II). The hydroxyapatite product was characterized by using X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS) and Brunauer Emmett Teller (BET) method. Batch adsorption experiment includes pH solution, contact time and Ni(II) concentration. Pseudo-first order and pseudo-second-order were used to investigate the reaction mechanism and kinetic model, while adsorption equilibrium was evaluated according to Langmuir and Freundlich isotherm. XRD and FTIR spectra confirmed that hydroxyapatite was successfully extracted. The molar ratio (Ca/P) of hydroxyapatite was found at 1.70. The particle size of the hydroxyapatite was 48.77 nm. The pseudo-second-order is appropriate to describe the kinetic model while the adsorption mechanism follows Langmuir isotherm, which has an adsorption capacity of 5.359mg/g. The thermodynamic evaluation suggested the adsorption of Ni(II) is spontaneous in the endothermic process.

Full Text:



- S. L. Iconaru, M. M. Heino, R. Guegan, M. V. Predoi, A. M. Prodan, D. Predoi, Removal of zinc ions using hydroxyapatite and study of ultrasound behavior of aqueous media, Materials, 2018, 11(1350), 1-16.

- M. Mohammad, S. Maitra, N. Ahmad, A. Bustam, T. K. Sen, B. K. Dutta, Metal ion removal from aqueous solution using physic seed hull, J Hazard. Mater., 2010, 179(1-3), 363-372.

- P. K. Pandey, S. Choubey, Y. Verma, M. Pandey, S. S. K. Kamal, K. Chandrashekhar, Biosorptive removal of Ni(II) from wastewater and industrial effluent, Int. J. Environ. Res. Public Health, 2007, 4(4), 332-339.

- X. Zhang, X. Wang, Adsorption and desorption of nickel (II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite, Plos One, 2015, 3, 1-21.

- M. A. Khan, M. Ngabura, T. S. Y. Choong, H. Masood, L. A. Chuah, Biosorption and desorption of nickel on oil cake: batch and column studies, Bioresour Technol., 2012, 103(1), 35-43.

- K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coir pith, Sep Puri Technol., 2001, 24(3), 497-505.

- K. Allam, A. El Bouari, B. Belhorma, and L. Bih, Removal of Methylene Blue from Water Using Hydroxyapatite Submitted to Microwave Irradiation, J Water Resource Prot., 2016, 8(3), 358-371.

- G. Ciobanu, S. Barna, M. Harja, Kinetic and equilibrium studies on adsorption of Reactive Blue 19 dye from aqueous solutions by nanohydroxyapatite adsorbent, Arch. Environ. Prot., 2016, 42(2), 3-11.

- N. A. M. Barakat, M. S. Khil, A. M. Omran, F. A. Sheikh, H. Y. Kim, Extraction of pure natural hydroxyapatite from the bovine bones biowaste by three different methods, J. Mater. Process. Technol., 2009, 209(7), 3408-3415.

- H. K. Reddy, D. K.V. Ramana, K. Seshaiah, A. V. R. Reddy, Biosorption of Ni(II) from aqueous phase by Moringa Oleifera bark, a low-cost biosorbent, Desalination, 2017, 268(1-3),150-157.

- N. Singh, and R. Gadi, Removal of Ni(II) and Cu(II) from their solutions and wastewater by nonliving biomass of Pseudomonas Oleovorans, Hydrol Current Res., 2012, 3(1), 1-4.

- M. Boutinguiza, J. Pou, R. Comesana, F. Lusquifios, A. de Carlos, B. Leon, Biological hydroxyapatite obtained from fish bone, Mater Sci Eng C, 2012, 32(3), 478-486.

- H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater, 2011, 7(7), 2769-2781.

- S. M. Mousa, N. S. Ammar, H. A. Ibrahim, Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste, J Saudi Chem Soc., 2016, 20(3), 357-365.

- S. C. Wu, H. C. Hsu, S. K. Shu, Y. C. Chang, Wen. F. Ho, Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment, J Asian Ceram Soc., 2016, 4(1), 85-90.

- P. Joshi, S. Manocha, Kinetic and thermodynamic study of the adsorption of copper ions on hydroxyapatite nanoparticles, Mater Today, 2017, 4(9), 10455-10459.

- S. George, D. Mehta, V. K. Saharan, Application of hydroxyapatite and its modified forms as adsorbents for water defluoridation: an insight into process synthesis, Rev Chem Eng., 2018, 1-32.

- Y. Nishiyama, T. Hanafusa, J. Yamashita, Y. Yamamoto, T. Ono, Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite, J Radioanal Nucl Chem., 2016, 307(2), 1279-1285.

- M. Harja, G. Ciobanu, Removal of oxytetracycline from aqueous solutions by hydroxyapatite as a low-cost adsorbent, in International Conference on Advances in Energy Systems and Environmental Engineering (ASEE17), Poland, July 2-5, 2017, 1-8.

- Y. Song, J. Gao, Y. Zhang, S. Song, Preparation and characterization of nano-hydroxyapatite and its competitive adsorption kinetics of copper and lead ions in water, Nanomater Nanotechno., 2016, 6(1-8), 1-8.

- S. M. H. Dabiri, A. A. Rezaie, M. Moghimi,

H. Rezaie, Extraction of Hydroxyapatite from Fish Bones and Its Application in Nickel Adsorption, BioNanoScience, 2018, 8(3), 823-834.

- M. Mourabet, A. El Rhilassi, H. El. Boujaady, M. B. Ziatni, R. El. Hamri, A. T. Tai, Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology, J Saudi Chem Soc, 2015, 19(6), 603-615.

- B. R. Sunil, M. Jagannatham, Producing hydroxyapatite from ï¬sh bones by heat treatment, Mater Lett., 2016, 185, 411-414.

- S. Rujitanapanicha, P. Kumpapanb, P. Wanjanoic, Synthesis of Hydroxyapatite from Oyster Shell via Precipitation, Energy Procedia, 2014, 56, 112-117.

- M. F. Alif, W. Aprillia, S. Arief, Peat water purification by hydroxyapatite (HAp) synthesized from waste pensi (Corbicula moltkiana) shells, in International Conference on Chemistry and Material Science (IC2MS), Malang Indonesia, 4-5 November 2017, pp. 1-6.

- R. N. Granito, A. C. M. Renno, H. Yamamura, M. C. de Almeida, P. L. M. Ruiz, D. A. Ribeiro, “Hydroxyapatite from fish for bone tissue engineering: A Promising Approach, Int. J. Mol. Cell. Med. Spring, 2018, 7(2), 80-90.

- K. Allam, A. El Bouari, B. Belhorma, L. Bih, Removal of methylene blue from water using hydroxyapatite submitted to microwave irradiation, J Water Resource Prot., 2016, 8, 358-371.

- B. A. E. Ben-Arfa, I. M. M. Salvado, J. M. F. Ferreira, Nouvel route for the rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reducting in process time, Mater Sci Eng C Mater Biol Appl., 2017, 70(1), 796-804.

- M. Canillas, R. Rivero, R. G. Carrodeguas, F. Barba, M. A. Rodriguez, Processing of hydroxyapatite obtained by combustion synthesis, Bol Soc Esp Ceram V, 2017, 56(5), 237-242.

- W. Kim, F. Saito, Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2, Ultrason Sonochem., 2001, 8(2),


- I. Mobasherpour, M. S. Heshajin, A. Kazemzadeh, M. Zakeri, Synthesis of nanocrystalline hydroxyapatite by using precipitation method, J Alloys Compd., 2007, 430(1-2), 330-333.

- M. Okada, T. Matsumoto, Synthesis and modification of apatite nanoparticles for use in dental and medical applications, Jpn Den Sci Rev., 2015, 51(4), 85-95.

- W. Wei, L. Yang, W. Zhong, J. Cui, Z. Wei, Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution, 2015, Appl Surf Sci., 332, 328-339.

- A. R. Ibrahim, Y. Zhou, X. Li, L. Chen, Y. Hong, Y. Su, H. Wang, J. Li, Synthesis of rod-like hydroxyapatite with high surface area and pore volume from eggshells for effective adsorption of aqueous Pb(II), Mater Res Bull., 2015, 62,


- M. S. Shojai, M. T. Khorasani, E. D. Khoshdargi, A. Jamshidi, Synthesis methods for nano size hydroxyapatite in diverse structures, Acta Mater., 2013, 9(8), 7591-7621.

- A. Pal, S. Paul, A. R. Choudhury, V. K. Balla, M. Das, and A. Sinha, Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications, Mater Lett., 2017, 203, 89-92.

- P. Wang, C. Li, H. Gong, X. Jiang, H. Wang,

K. Li, Effect of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by a wet chemical process, Powder Technol., 2010, 2013(2), 315-321.

- P. Kamalanathan, S. Ramesh, L. T. Banga, A. Niakan, C.Y. Tan, J. Purbolaksono, H. Chandran, W. D. Teng, Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor, Ceram Int., 2014, 40(10), 16349-16359.

- S. S. Gupta, K. G. Bhattacharya, Adsorption of Ni(II) on clays, J Colloid Interface Sci., 2016, 295(1), 21-32.

- S. S. Salih, T. K. Ghosh, Preparation and characterization of bioadsorbent beads for chromium and zink ion adsorption, Cogent Environ Sci., 2017, 3, 1-14.

- I. Mobasherpour, E. Salahi, M. Pazouki, Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study, Arab J Chem., 2012, 5(4), 439-446.

- S. S. Salih, T. K. Ghosh, Highly efficient competitive removal of Pb(II) and Ni(II) by chitosan/diatomaceous earth composite, J Environ Chem Eng., 2018, 6(1), 435-443.

- S. S. Salih, T.K. Ghosh, Preparation and characterization of chitosan-coated diatomaceous earth for hexavalent chromium removal, Environ. Process, 2018, 5, 23-39.

- A. I. Adeogun, E. A. Ofudje, M. A. Idowu, S. O. Kareem, S. Vahidhabanu, B. R. Babu, Biowaste-derived hydroxyapatite for effective removal of reactive yellow 4 dye: equilibrium, kinetic, and thermodynamic studies, ACS Omega, 2018, 3(2), 1991-2000.

- I. Kim, P. N. Kumta, Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder, Mater Sci Eng B., 2004, 111(2-3),


- O. Oter, H. Akcay, Use of natural clinoptilolite to improve water quality: sorption and selectivity studies of lead (II), copper (II), zinc( II), and nickel (II), Water Environ Res., 2007, 79(3),


- W. Yunhai, F. Yiang, Z. Meili, M. Zhu, Y. Shengxin, A. Aynigar, F. Peng, Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of Cr(VI) and Ni(II) from single and binary systems, Biochem Eng J., 2016; 105, 27-35.

- K. Periasamy, C. Namasivayam, Removal of nickel(II) from aqueous solution and nickel plating industry using agricultural waste: peanut hulls, Waste Manage., 1995, 15(1), 63-68.

- M. Manjuladevi, R. Anitha R. and S. Manonmani, Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel, Appl Water Sci., 2018, 8(36), 1-8.

- O. Khelifi, M. Nacef, A. M. Affoune, Nickel (II) Adsorption from Aqueous Solutions by Physico-Chemically Modified Sewage Sludge, Iran J Chem Eng., 2018; 37: 73-87.

- M. H. Rodiguez, J. Yperman, R. Carleer, J. Maggen, D. Dadi, G. Gryglewicz, B. V. der Bruggen, J. F. Hernandez, A. O. Calvis, Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon, J Environ Chem Eng, 2018, 6(1), 1161-1170.



  • There are currently no refbacks.

Copyright (c) 2019 Mediterranean Journal of Chemistry