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Abstract: The present article aims to optimize the decarbonization of Timahdit oil shale layer Y by removing 

carbonates from the raw rock using acetic acid. The response surface methodology “central composite design 

(CCD)” has been used as a method of optimization to study the 3 factors of the process. The factors studied are 

the concentration of the acid, the processing time, and the ratio (liquid/solid). The optimal conditions with 

68.17% of residue rate are obtained with 2 mol/l as concentration, 120 min as a time of treatment and 10.02 for 

the ratio. 

The raw (Y) and optimized materials (YO) were characterized by Scanning Electron Microscopy (SEM), X-

ray fluorescence (XRF) and X-ray diffraction (XRD). The results showed that the acetic acid used to remove 

carbonates affects the chemical composition and the texture evolution of the residues.  
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Introduction   

 

 The global economic development places high 

demands on energy resources. Oil shales are an 

interesting energy reserve, and their distribution in 

the world is more homogeneous than oil or natural 

gas 1,2. World reserves are estimated at 2000 trillion 

barrels of oil 3 distributed in more than 50 countries. 

Witch Morocco is ranked into the 7th rank after the 

USA, Russia, the Democratic Republic of Congo, 

Brazil and Italy with a potential of 53 billion barrels 

of oil. Which more than 37 billion barrels are in the 

two main deposits: Timahdit and Tarfaya 2,4. 

 Oil shale as a kind of alternative fuel resource 

has attracted the attention of many researchers, so 

several studies have been carried out on Moroccan 

shale oil; mainly those of the deposits of Tarfaya and 

Timahdit 5. Oil shale is a complex mixture of organic 

and inorganic materials. The inorganic components 

mainly include carbonates, silicates, and pyrite 

minerals, as well as trace elements (As, B, Mo, Ni, 

Zn, Ti, etc.). The organic part includes kerogen and 

small quantities of bitumen 6-8.  

 Most of the studies had as their main objectives, 

the development and the valorization of oil shale as 

an exploitable resource as much as natural resources, 

in various more applied fields 9-11, such as the 

development of oil shale applications in the fields of 

adsorbent materials for the decontamination of 

effluents. The major advantage of such applications 

in the development of adsorbents lies in the 

availability of this material and its composition rich 

in organic matter (carbon source) intimately linked 

to a mineral matrix. In this paper, we focus on one of 

the stages of preparation of carbon adsorbents, 

called: decarbonization.  

 

Materiel and method 

 

Decarbonization process 

 The oil shale used in this work was collected 

from the layer Y of Timahdit (Middle Atlas), 

Morocco. The oil shale was crushed and sieved to a 

particle size of ≤ 0.5 mm. The homogeneous powder 

obtained was decarbonated with acetic acid.  First, 

10 g of the raw oil shale (Y) was stirred with 

solutions of CH3COOH at different concentrations, 

different treatment durations and different ratios 

(l/s). Then the residues obtained (YA) after filtration 

were washed with distilled water to neutral pH. Then 

they were dried in an oven for 24 hours at a 

temperature of 80 °C.  The residue yield after 

decarbonization was determined by using the 

following equation: 
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Residue yield (%) = 
𝑊𝑐

𝑊0
 x 100           (1) 

 

Where WC is the dry weight (g) of final 

decarbonated material 

and W0 is the dry weight (g) of the precursor.   

     

Chemicals 

 The acetic acid used in this study was of 

analytical grade, and the solutions were prepared 

using distilled water. 

 

Materials characterization and 

instrumentation 

 The characterization of the raw and optimized 

materials was determined with the help of 

spectroscopic and quantitative analysis: Hirox SH-

3500MB performed scanning electron microscopy 

(SEM) analysis.  Bruker D2 Phaser realized x-ray 

diffraction (XRD) analysis, and EPSILON 3 XL 

PANalytical performed the X-ray fluorescence 

(XRF) analysis. 

 

RSM and CCD statistical optimization 

 RSM is an applied statistical technique that is 

used for the optimization of the effects of process 

variables on the properties of prepared products 

using a combination of mathematical and statistical 

approach 12. In this research, CCD, which was a sub-

component of RSM, was used to determine the 

optimum process variables for decarbonization of 

Timahdit oil shale using acetic acid as a 

decarbonization agent. The CCD was used for fitting 

a second-order model, which requires only a 

minimum number of experiments for modeling 13. 

The CCD consists of 2n factorial runs (coded to the 

usual ± notation) with 2n axial runs (±a, 0, 0,…, 0), 

(0, ±a, 0, 0,…, 0),…, (0,0,…,±a) and accentor runs 

(six replicates, 0, 0, 0,…, 0). The number of factors n 

increases the number of runs for a complete replicate 

of the design, which is given in Eq. (2). 

N = 2n + 2n + nc                                         (2) 

 The optimization process involves three major 

steps: (1) performing the statistically designed 

experiments, (2) estimating the coefficients in a 

mathematical model, and (3) predicting the response 

and checking the adequacy of the model 14-18. An 

empirical model was developed to correlate the 

response to the decarbonization process and is based 

on second-order quadratic model for decarbonization 

of Timahdit oil shale using acetic acid as given by 

Eq. (3) in order to analyze the effect of parameter 

interactions 19. 

Yi = b0 + Σbi Xi + Σbii Xi2 + ΣbijXiXj + £i               (3) 

 Where Yi is the response variable, b0 is the 

constant of the model, bi is the effect of factor Xi, bij 

is the effect of the interactions between factors Xi 

and Xj, bii is the quadratic effect of factor Xi and £i is 

the residue. 

 

Model fitting and statistical analysis 

 The statistical software package Design-Expert, 

JMP 7, was used for regression analysis of 

experimental data to fit the equations developed and 

also to plot desirability curves. ANOVA was used to 

estimate the statistical parameters. 

 

Results and Discussion 

 

Experimental design Methodology 

Matrix of experiments and realization of 

tests 

 The results obtained in a previous screening 

study allowed us to choose the most influential 

variables on the decarbonization of the layer Y of 

Timahdit oil shale, namely the concentration of 

acetic acid used, the duration of decarbonization 

process and the ratio (liquid (acetic acid 

solution)/solid (Crushed oil shale)). This work will 

be devoted to the optimization of the decarbonization 

process using composite centred design (CCD). This 

later was utilized for the development of correlations 

between the dependent variables (factors) and 

independent variables (responses). The factors and 

their field of study are shown in (Table 1). The 

studied response is Y: the residue yield after 

decarbonization. Runs 8, 9, 10 and 11 at the center 

point were used to determine the experimental error. 

The experimental factors and their levels are 

presented in (Table 1). The matrix of the 

experiments and the results are presented in           

(Table 2). 

 

Table 1. Experimental factors and levels in the central composite design. 

Factors Lower level (-1) Central points (0) Higher level (+1) 

Concentration (mol/l) (X1) 1 2 3 

Time (min) (X2) 290.3 540 789.7 

Ratio (X3) 8.041 12.5 16.959 
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Table 2. Experimental design matrix and results. 

Run Coded level Actual level of variables  

Concentration (X1) Time (X2) Ratio (X3) Residue yield (Y) 

1 00a 2 540 5 68.56 

2 −−− 1 290.3 8.041 72.2 

3 +−− 3 290.3 8.041 68.03 

4 −+− 1 789.7 8.041 71.92 

5 ++− 3 789.7 8.041 68.12 

6 0a0 2 120.06 12.5 68.25 

7 a00 0.32 540 12.5 79.58 

8 000 2 540 12.5 68.07 

9 000 2 540 12.5 68.03 

10 000 2 540 12.5 68.06 

11 000 2 540 12.5 68.02 

12 A00 3.68 540 12.5 67.22 

13 0A0 2 959.94 12.5 68.16 

14 −−+ 1 290.3 16.959 72 

15 +−+ 3 290.3 16.959 68.12 

16 −++ 1 789.7 16.959 72.2 

17 +++ 3 789.7 16.959 67.35 

18 00A 2 540 19.99 68.01 

 

Evaluation of the quality of the model 

 The essential characteristics of the adjustment of 

the quadratic model are given in (Table 3). The 

regression is illustrated by the graph of the responses 

measured as a function of the estimated responses, 

which show the distribution of points around the 

regression line (Figure 1). The coefficient of 

determination R2 is 0.95 close to 1; this indicated 

that the direct effects of the factors explained more 

than 95% of the variation observed. Therefore, the 

choice of quadratic model to the modeling of 

decarbonization process was good. In the presence of 

several explanatory variables, we use the adjusted 

coefficient of determination R2 (adjusted R2 equals 

88%), which confirm a good fit of the model and that 

the descriptive quality of the postulated model is 

satisfactory. 

 

Figure 1. Graphical representation of observed values as a function of predicted values 
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Table 3. Adjusted regression of the model 

R square 0.946 

Adjusted R square 0.885 

Residual standard error 1.039 

Average response 69.55 

Observations (or weighted sums) 18 

 

Analysis of variance (ANOVA) 

 The validation of the quadratic model for the 

decarbonization process of Timahdit oil shale was 

performed using the model analysis of variance 

(ANOVA) and the method of the absence of 

adjustment analysis, also called analysis bias. 

ANOVA was used to assess the variance of the 

model established about the variance of the residue, 

using the test "Fisher Snedecor", the result was 

considered significant if (Fexp >> Fα, νmod, νres), where 

α = 0.05 [20]. According to the result of the ANOVA 

test, analysis of the experiment gives a factor Fexp = 

15.47. The theoretical values determined according 

to the table of Fisher Snedecor (for νmodel = 9, νresidue 

= 8 and confidence level = 95%) was Fα, νmod, νres = 

F 0.05, 9, 8 = 3.39. This theoretical factor was much 

lower than the experimental factor, Fexp = 15.47>> 

Ftheo = 3.39. The results of the lack of adjustment of 

the analysis indicate that the p-value was largely less 

than 0.05; these analyses were determined using the 

JMP7 software. The obtained results are shown in 

(Table 4). The results of the ANOVA test and the 

lack of adjustment showed that the quadratic model 

established was validated. 

 

Table 4. Analysis of variance (ANOVA) determined by the JMP software. 

Source of variation Degree of freedom Sum Of squares Mean square F Report 

Model 9 150.33081 16.7034 15.4676 

Residue 8 8.63919 1.0799 Prob. > F 

Total 17 158.97000  0.0004 

 

Estimation of model Coefficients 

 The significance of each coefficient was 

determined using the F-test and p-value given by 

JMP 7 software. A p-value less than 0.05 indicate the 

significance of an effect at 95% confidence level 21. 

The significant effects and their coefficients are 

shown in (Table 5). The effects coefficients of the 

model showed that the decarbonization residues were 

significantly affected by the concentration (X1) and 

the quadratic term of concentration (X11) at a risk α = 

0.05, the other factors and their effects were not 

significant, their p-values were larger than 0.05, we 

can neglect their coefficients from the equation of 

the decarbonization residues. The fitted quadratic 

model for decarbonization residues was given by 

equation (4). The equation of the established model 

shows that the concentration has a negative effect, 

which means that the increase in this factor gives a 

decrease in the residue rate. 
 

Y=68.049 - 2.744*X1 +1.874*X1
2
                    (4) 

 

Table 5. Graph of the effect of different factors. 

Terme Estimation Standard 

error 

Report t Report t Prob.>|t| 

Constante 68.049219 0.518828 131.16  <.0001  

Concentration  -2.744919 0.281201 -9.76  <.0001* 

Concentration*Concentration 1.8743979 0.292187 6.42  0.0002* 

Ratio  -0.111665 0.281201 -0.40  0.7017 

Concentration*Ratio  -0.095 0.367406 -0.26  0.8025 

Time  -0.066733 0.281201 -0.24  0.8184 

Ratio * Ratio  0.0659723 0.292187 0.23  0.8270 

Concentration*Time  -0.075 0.367406 -0.20  0.8433 

Time* Ratio  -0.0475 0.367406 -0.13  0.9003 

Time*Time 0.0376881 0.292187 0.13  0.9006 

* Significant at the level 95%. 

 

Optimization using Desirability function  

 In numerical optimization, we chose the desired 

goal for each factor and response. The possible goals 

were: to maximize, minimize, target, within range, 

none (for responses only) and set to an exact value 

(factors only). A minimum and a maximum level 

must be provided for each parameter included. A 

weight can be assigned to each goal to adjust the 

shape of its particular desirability function. The goals 



Mediterr.J.Chem., 2019, 8(5) L. Makouki et al.       376 
 

are combined into an overall desirability function. 

Desirability is an objective function that ranges from 

zero outside of the limits, to one at the goal. The 

program seeks to maximize this function. The goal 

seeking begins at a random starting point and 

proceeds up the steepest slope to a maximum. There 

may be two or more maximums because of curvature 

in the response surfaces and their combination in the 

desirability function. Starting from several points in 

the design space improves the chances of finding the 

‘best’ local maximum 22-25. The optimal condition of 

decarbonization residue determined using JMP 7 

Software was represented in (Figure 2). It illustrates 

a case study where we set the goal at 68.18% with a 

concentration of 2 mol/l. Then varied the other 

parameters in the field of study using the prediction 

profiler which obtained the values of the other input 

factors: the treatment time is equal to 120 min, and 

the ratio is equal to 10.02. 

 

Figure 2. Profiles for predicted values and desirability function of decarbonization residues 

 

Three-dimensional response surface 

 Three-dimensional (3D) for the measured 

response, was formed based on the model 

polynomial functions, to assess the change of the 

response surface 26, and the relationship between the 

variables can be further understood 27. It is a method 

to visualize the relationship between responses and 

experimental levels of each variable and the type of 

interactions between variables. The validated model 

can be plotted in a three-dimensional graph and 

generate a surface response that corresponds to the 

response function used for determination of the best 

conditions for a response. Since the model has three 

factors, one factor was held constant for each 

diagram. The plot of response surface (3D) presented 

by (Figure 3), shows the effect of concentration (X1) 

and time (X2) on the response. According to the plot 

(3D), an increase in concentration reduces the 

capacity of decarbonization.  

 

 

Figure 3. Response surface result of quadratic model (3D) 
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Characterization 

 

Scanning electron microscopy (SEM) analysis  

 The SEM images of raw and optimized materials 

are shown in (Figure 4). By comparing the SEM 

images of the two different samples, we can 

conclude morphological evolution during 

decarbonization. The Sample Y has a compact 

surface structure, while the texture of YO shows 

cracks and breaks, which can be attributed to the 

release of a large amount of carbon dioxide formed 

during decarbonization using acetic acid. However, 

most pores of oil shale are not yet fully open. 

 

 
Figure 4. SEM image of the raw and optimized materials 

 

X-ray diffraction (XRD) analysis 

The results of the XRD analysis of the raw 

material (Y) of Timahdit oil shale show that the main 

inorganic compounds identified are calcite, quartz, 

dolomite, pyrite and clay (mica, illite, kaolinite, and 

montmorillonite) (Figure 5). Depending on the 

relative height of the peaks, calcite is the most 

abundant mineral in the sample (maximum peak 

around 2= 29.5°). After calcite, quartz is the 

second dominant mineral. On the other hand, in the 

decarbonized sample (Figure 4), the calcite was 

eliminated by the attack of acetic acid, as confirmed 

by the disappearance of the peak at 2= 29.5°. In the 

YO sample, the peaks characteristic of quartz, 

dolomite, silicate and clay mineral were not 

removed, indicating that acetic acid only removes 

calcite. 

 

 
Figure 5. XRD patterns of the raw and optimized materials 
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X-ray fluorescence (XRF) analysis 
 

The results of XRF analysis are presented in 

(Table 6) and (Table 7). In agreement with the XRD 

data, the results of the XRF analysis of the Y sample 

indicate the presence of calcite as a main carbonate 

mineral (37.40% by weight) (Table 7), the CaO 

content is very high compared to the very low MgO 

content (2.15% by weight). The SiO2 content is 

28.56% by weight, indicating the presence of silica or 

quartz. 

  While the mineralogical composition of the YO 

sample differs significantly from the raw sample, YO 

contains fewer carbonates (13%) and more silicates 

(39.53%). The results of mineral elements (Table 6) 

show that crude oil shale is enriched in calcium (Ca), 

silicon (Si), sulfur (S), aluminum (Al), iron (Fe). 

 

Table 6. XRF results of the elements selected of Timahdit oil shale. 

Element Mg Al Si P S Cl k Ca Ti Fe 

Y (%) 0.912 3.543 10.251 0.795 4.264 0.22 1.402 26.123 0.522 3.627 

YO (%) 0.808 4.149 12.591 0.837 5.481 2.402 1.942 8.393 0.596 3.948 

 

Table 7. XRF results of the Compounds of Timahdit oil shale 

Compound MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 Fe2O3 

Y (%) 2.157 9.183 28.562 2.202 12.569 1.852 37.401 0.787 4.604 

YO (%) 2.287 12.562 39.536 2.510 17.405 2.712 13.001 1.017 5.572 

 

Conclusion 

 In this work, the effect of each factor involved in 

the process of decarbonization was determined with 

the response surface methodology “central 

composite design (CCD)”. This method allowed us 

to determine the optimum conditions of the factors 

influencing the decarbonization process, which are 

the concentration, the time and the ratio. The results 

of the optimization of the operating conditions 

allowed us to remove 68.17 % of carbonate. The 

three parameters were set at a concentration = 2 

mol/l, a ratio = 10.12, and a time = 120 min. The 

results of characterization showed that the acetic acid 

used to remove carbonates affects the chemical 

composition and the texture evolution of the 

residues.  
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