

Mediterranean Journal of Chemistry 2019, 8(6), 462-469

Cationic distribution in the new Nd₂CaSnO₆ perovskite type-phase

Noureddine Boudar ¹, Abderrahim Aatiq ^{1,*}, Hajar Bellefqih ¹, Asmaa Marchoud ¹, Bouchaib Manoun ² and Brahim Orayech ³

¹ University Hassan II of Casablanca, Faculty of Sciences Ben M'Sik, Chemistry Department. Laboratory of Physical-Chemistry of Applied Materials, Avenue Idriss El Harti, B.P. 7955, Casablanca, Morocco

² University Hassan I, Faculté des Sciences et Technique de Settat, Laboratoire des Sciences des Matériaux, Morocco

³ CIC EnergiGune, Power Storage; Batteries and Supercaps, Albert Einstein, 48, 01510 Miñano, Alava, Spain.

Abstract: The new Nd₂CaSnO₆ double perovskite oxide has been synthesized in polycrystalline form by a conventional solid-state reactions process at 1300°C in air atmosphere. Structure refinement, realized by Rietveld analysis using the X-ray powder diffraction (XRD) data, shows that the compound crystallizes in monoclinic symmetry with $P2_1/n$ space group and Z = 2. Obtained unit-cell parameters are: a = 5.6585(1) Å, b = 5.9254(1) Å, c = 8.1883(2) Å, $\beta = 90.116(1)$ ° and V = 274.5(1) Å³. The cationic distribution over the A- and *B*-sites of this perovskite structure can be illustrated by the [Nd_{1.90}Ca_{0.10}]_A[Nd_{0.10}Ca_{0.90}]_{B'}[Sn_{1.00}]_{B''}O₆ crystallographic formula. The monoclinic structural distortion involves long-range ordering between Sn⁴⁺ (in 2c site) and a random mixture ($_{0.90}Ca^{2+}$; $_{0.10}Nd^{3+}$) (in 2d site) all at the B-perovskite sites.

Keywords: Double perovskite; X-Ray diffraction; Crystal structure; Rietveld refinement; Cationic distribution.

Introduction

Perovskite oxides ABO_3 can be described as the framework of corner-shared BO_6 octahedra with 12-coordinated A cation. When two different cations are introduced at the B site, double perovskite structures with the formula of $A_2B'B''O_6$ are formed. Compounds crystallizing in this structure-family are among the most intensely studied materials in solid state chemistry and physics. They exhibit several fundamentally interesting chemical and physical properties ¹⁻⁶. The wide range of interesting properties stems largely from the exceptional structural and compositional flexibility of the perovskite structure.

To understand the physical properties of the $A_2B'B''O_6$ double perovskites, it is important to know the arrangement and position of the B'(B'') cations because the *B* cations generally determine the physical properties of perovskites ABO_3 . It should be noticed that differences in size and charge of the *B*-site cations lead to three types of arrangements; random, rocksalt arrangement when the cations alternate in all three dimensions and occasionally, the *B'* and *B''* cations may also form a layered order, where they alternate only in one direction ⁷. Schematic structures are shown in Figure 1. In this scheme rock salt, columnar and layered ordering become (111), (110) and (001) ordering, respectively.



Figure 1. The crystal structures of perovskite with rock-salt (a) layered (b) and columnar (c) octahedral *B*-cation ordering.

 0.02° , with a counting time of 15 s per step. The Rietveld refinement of the structure was performed using the Fullprof program ²¹.

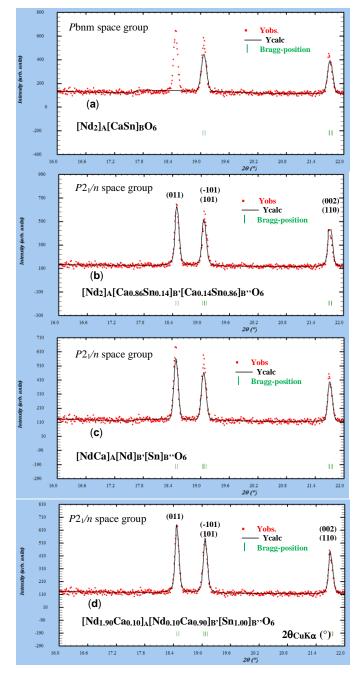
Results and Discussion

Structural refinement

In a first time, the obtained XRD of Nd₂CaSnO₆ shows that his structural refinement can be performed in the space group Pbnm (a non standard setting of Pnma) based on a similar orthorhombic GdFeO₃ type-structure with a randomly cationic distribution within the A and B site of the ABO_3 perovskite ²². The atomic position of GdFeO₃were used as starting parameters for the Rietveld refinement of Nd₂CaSnO₆. Our attempt to refine the structure of Nd₂CaSnO₆ using a structural model with the Pbnm space group was not successful because some experimental diffraction lines (e.g., diffraction peak at around $2\theta = 18.47^{\circ}$) are not generated (Figure 2a). Since the experimental XRD pattern of Nd₂CaSnO₆ also has diffraction peaks from a small amount (about 6 wt. %) of the Nd₂Sn₂O₇, the Rietveld refinement was carried out using a two-phase model, consisting of Nd₂CaSnO₆ and Nd₂Sn₂O₇. It should be noted that only high-intensity diffraction peaks of Nd₂Sn₂O₇ appear as impurity in the XRD pattern. In order to explain the splitting of some diffraction lines in the XRD spectra of Nd₂CaSnO₆, it was necessary to find a structural model with a lower symmetry than the orthorhombic. Analyzing the different structural models expected in the case of double-perovskite structures, we found that the model with the $P2_1/n$ space group could explain all features of the diffraction profile. Also, we observed that the systematic absences of the reflections h0l with h+l=2n+1 and 0k0 with k=2n +1 in the XRD powder pattern suggests the space group $P2_1/n$. As it will be shown later, the presence of 0kl: k = 2n+1 reflection (e.g., reflection (011) at $2\theta \sim 18.47^{\circ}$) is evidence that the B-cation arrangement is rock salt and not random. Note that many reports show that both A and B sites, in the ABO_3 perovskite, can be occupied either by calcium and/or Neodymium atoms as it was mentioned for example in $Ca(Ca_{1/3}Nb_{2/3})O_3 \xrightarrow{23-24}$ and Ca₂NdSbO₆ (i.e. $[CaNd]_A[CaSb]_BO_6$) ¹⁷. It is well known that Sn^{4+} (r_{VISn}^{4+} = 0.69 Å) ion prefer to occupy the octahedral *B*-site of *ABO*₃ perovskite.

Concerning the Ca²⁺ and Nd³⁺ cations, we note that there is no significant difference between their ionic radii in octahedral *B*-site (i.e., $r_{VI Nd}^{3+} = 0.98$ Å, $r_{VI Ca}^{2+} = 1.00$ Å) but for the *A*-site, and if we consider a twelve coordination, a relatively significant difference between their ionic radii ($r_{XII Nd}^{3+} = 1.27$ Å, $r_{XII Ca}^{2+} = 1.34$ Å) is observed ²⁵. According to the last remarks it is difficult to distribute, without ambiguity, the Ca and Nd atoms in Nd₂CaSnO₆ between the two *A* and *B*-sites of the perovskite structure. In order to clarify the cationic distribution in Nd₂CaSnO₆, the structural refinement was realized in three principal steps. In the first step, starting parameters for the

materials containing rare earth ions, the nature and the size of the other elements of the material, seems to be the force driving of selective occupancy of their A and *B* sites. Thereby in the case of La₂CuTiO₆, the Cu²⁺ and Ti^{4+} ions are distributed randomly in the *B*-sites (*Pnma* space group) ⁸ however M^{2+} (*M*=Zn, Mg) and Ti⁴⁺ ions in La₂MTiO₆ and Nd₂MgTiO₆ show that cations in B sites are arranged in the rock salt configuration ($P2_1/n$ space group) (Figure 1a) ⁹⁻¹¹. Structures of Ln_2CuSnO_6 (Ln = Pr, Nd, Sm) double perovskite 7,12 show a layered distribution of *B*-cations similar to that observed for La₂CuSnO₆ ($P2_1/m$ space group) ¹³ (Figure 1b). The large differences of ionic radii and oxidation state between Ca2+ and Sb5+, result in the ordering distribution of Ca²⁺ and Sb⁵⁺ cations within B-sites of Ca₂LaSbO₆ and Ca₂NdSbO₆ ($P2_1/n$ space group) ¹⁴⁻¹⁷. Cationic distribution of both compounds can be illustrated respectively by the $[CaLa]_{A}[CaSb]_{B}O_{6}$ ¹⁵⁻¹⁶ and $[CaNd]_{A}[CaSb]_{B}O_{6}$ ¹⁷ crystallographic formula 15-17. Similar cationic distribution are also found in the $[Ca_{1/3}La_{2/3}]_A[Ca_{1/3}Ti_{2/3}]_BO_3$ compound $(P2_1/n \text{ space})$ group)¹⁸. It should be pointed out that in the case of Ca2SmSbO6 and Ca2LnRuO6 (Ln=La-Lu) phases $(P2_1/n \text{ space group})$ a peculiar cationic distribution have been reported ^{14,16}. Indeed, the Ca²⁺ and Ln³⁺ cations are partially disordered in the A and B' sites positions of the A₂B'B''O₆ perovskite phase; the Ru⁵⁺ and Sb^{5+} occupied only the B'' sites. Their crystallographic formulas have been written as $[Ca_{(2-x)}Ln_x]_A[Ln_{(1-x)}Ca_x]_{B'}[M]_{B''}O_6$ (M = Ru, Sb). In our previous structural characterization study of $[Ca_{1/3}Ln_{2/3}]_A[Cu_{1/3}Ti_{2/3}]_BO_3$ (Ln = Pr, Nd, Sm) and $[Ca_{1/3}Ln_{2/3}]_A[Zn_{1/3}Ti_{2/3}]_BO_3$ (Ln = La, Pr, Nd, Eu) phases, some of us have shown the existence of a statistical cationic distribution within the A and B sites of the perovskite (*Pbnm* space group) 19,20 . As shown by the crystallographic formula, in all materials the rare earth cation occupied only the A sites. In a continuation of our scientific research, herein, we report the structure as well as the cationic distribution within both A and B-sites of the Nd₂CaSnO₆ double perovskite.

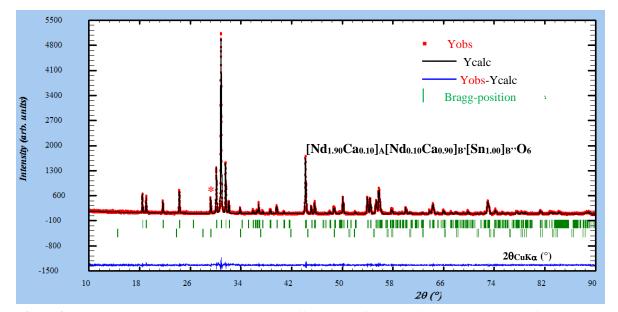

According to several reports, in double perovskite

Material and Methods

Polycrystalline Nd₂CaSnO₆ was prepared by classical high temperature solid-state chemistry from powdered mixtures of Nd₂O₃, CaCO₃ and SnO₂ in the adequate stoichiometric ratio. The mixture was heated progressively with intermittent grinding at 900°C (12 h), 1000°C (24 h), pressed into pellets and sintered at 1300°C for another 48 h in air atmosphere. The sample was cooled to room temperature for re-grinding several times. The compound was characterised by X-ray diffraction (XRD) at room temperature with a Panalytical X'Pert-PRO (θ -2 θ) diffractometer equipped with x'celerator detector; (CuK α) radiation (45 kV, 40 mA); divergence slit of 1°. The data were collected from 10 to 90° 2 θ , in steps of

Rietveld refinement of Nd₂CaSnO₆ were based on those reported for Nd₂MgTiO₆ ($P2_1/n$ space group)¹¹. The Ca and Sn atoms were constrained to be distributed between the two possible 2d ($\frac{1}{2}$ 0 0)

position (i.e., B' type-site) and $2c (0 \frac{1}{2} 0)$ position (i.e., B'' type-site) and the Nd atoms are supposed the reside only in the A-sites of the perovskite (i.e. 4e (x y z) positions).


Figure 2. Experimental (•••) and calculated (—) of the XRPD patterns, in the 16-22 (2 θ) range (CuK α radiation), of Nd₂CaSnO₆. Bars in green () indicate the Bragg peak positions. Results of the Rietveld refinement is given for each hypothesis of cationic distribution and the allowed reflections are also reported.

The occupancy factors for Ca and Sn atoms within the two possible positions were allowed to vary, but the total cation contents were constrained to be in accordance with the stoichiometry of the initial synthesized mixture. Obtained cationic distribution can be illustrated by the $[Nd_2]_A[Ca_{0.86}Sn_{0.14}]_{B'}$.

 $[Ca_{0.14}Sn_{0.86}]_{B''}O_6$ crystallographic formula. As shown in the Figure 2b, the concordance between experimental and calculated XRD data is not

satisfactory but, as already predicted, this last result shows a high tendency for Sn atoms to occupy the 2c position of the octahedral site. This refinement leads also to a negative value for the displacement parameters of Ca and Sn in 2d and 2c sites. In fact, the negative values for the displacement parameters of Ca and Sn suggest an electronic deficit within the 2d and 2c sites. Although the results of this refinement are not too satisfactory, they clearly show the necessity of assuming the distribution of a heavier atom than Ca and Sn in perovskite B sites. In fact, given that Nd₂CaSnO₆ contains Neodymium atoms, which have a relatively high atomic number (i.e., $Z_{Nd} = 60$), in the next refinement step, the Rietveld refinement with the hypothesis of [NdCa]_A[NdSn]_BO₆ crystallographic formula was tested. During this last refinement one Nd and Sn atoms are distributed between the two 2d and 2c positions of the B-sites while the Calcium and the other Neodymium atom has been localized within the A-sites (i.e.: 4e (~0.51 ~0.55 ~0.25) position). This refinement leads to relatively larger values of reliability factors [e.g., R_B =7%]. Experimental and calculated XRD from this Rietveld refinement, over the 2θ range from 16° to 22° , are compared in Figure 2c with results obtained from the previous other hypotheses of cationic distribution. During the final step of refinement, the Sn atoms are localized in the 2c position (i.e., B'' type site) while the occupancy rate of Nd and Ca atoms, within the 4e (i.e., A-sites) and 2d position of B'-sites (i.e., $(\frac{1}{2} 0 0)$), have been allowed to vary but the total Nd and Ca atoms contents were constrained to be in accordance with the stoichiometry of compound. Surprisingly, this refinement led to acceptable reliability factors, e.g., $R_{\rm B} = 3.8\%$. Thereby the final obtained cationic distribution that satisfactorily reproduces all the characteristics of the pattern (i.e., $[Nd_{1.90}Ca_{0.10}]_A[Nd_{0.10}Ca_{0.90}]_B$, $[Sn_{1.00}]_B$, O_6

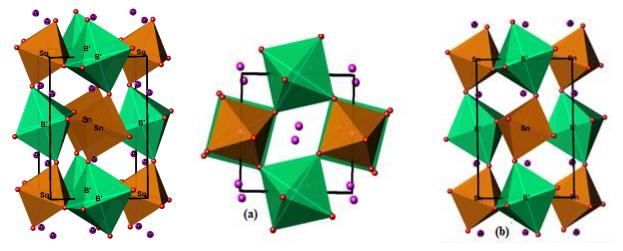
crystallographic formula) is different from that normally expected. In fact, we need to distribute the Nd^{3+} cation between the A and B'-sites; otherwise the model is not able to correctly reproduce the experimental intensity of many peaks in the pattern. It should be noticed that for a given B cation radius (or B'B'' combination average of $A_2B'B''O_6$), there is an ideal A cation size, as defined by a tolerance factor trA+rOequal to 1 (i.e.: $t = \frac{rA+rO}{\sqrt{2}(r\bar{B}+rO)}$, where the $r\bar{B}$ is the mean radius of B' and B'', r_A and r_O are respectively the ionic radii of A and O atoms) 26 , where the A cation perfectly fits the cubic network of corner-sharing octahedra. When the A cation size is smaller, and the tolerance factor becomes less than 1, an octahedral tilting distortion typically occurs to reduce the effective coordination number of the A cation and consequently leads to a decrease of the number of its neighbours oxygen's from twelve to eight. Given that the ionic radius of eight coordinate for Ca^{2+} ($r_{VIII Ca}^{2+}$ = 1.12 Å) is only 0.01 Å greater than that of Nd³⁺ ($r_{VIII Nd}^{3+} = 1.11$ Å) ²⁵, the obtained cationic distribution which is illustrated by the final crystallographic formula $[Nd_{1.90}Ca_{0.10}]_{A}$ $[Nd_{0.10}Ca_{0.90}]_{B'}[Sn_{1.00}]_{B''}O_6$, can be explained by the fact that the Ca²⁺ cation has displaced the Nd³⁺ cation from the A-site position of the double perovskite.

Figure 3. Experimental (•••) calculated (—), and difference profile (—) of the XRPD patterns of Nd₂CaSnO₆ (Cu*K* α radiation). Bars in green (|) indicate the Bragg peak positions. The top bars correspond to Nd₂CaSnO₆ whereas the bottom bars correspond to Nd₂Sn₂O₇. The main peaks corresponding to the Nd₂Sn₂O₇ phase are indicated by asterisk (*).

Experimental and calculated XRD from the final step of Rietveld refinement are also compared in Figure 2d, over the 2θ range from 16° to 22° , with the previous results. It should be noticed that during the last Rietveld analyses the displacement parameters of atoms, within the two *B*' and *B*'' sites, were constrained to be equal and the oxygen sublattice was assumed to be fully occupied. The agreement between

the observed and calculated profile of the final Rietveld refinement, in the 10-90° (2θ -range), of Nd₂CaSnO₆ is shown in Figure 3.

The results of refinement, the atomic positions, selected bonds distances, bond valence sums ²⁷ and bond angles are summarized in Tables 1-3. X-ray data, obtained from the "observed intensities" of the


Rietveld refinement (Cu $K\alpha$ 1: 1.5406 Å), of Nd₂CaSnO₆ are given in Table 4.

Structural Description

Structure of Nd₂CaSnO₆ phase consists of three of polyhedra, $(Nd_{1.90},$ types $Ca_{0.10}(1)O_{12}$, $(Ca_{0.90},$ $Nd_{0.10}(2)O_6$ and SnO_6 (Figure **4**). (Nd_{1.90}, Ca_{0.10})(1) cations are statistically distributed A-site within the of [Nd_{1.90}Ca_{0.10}]_A[Nd_{0.10}Ca_{0.90}]_{B'}[Sn_{1.00}]_{B''}O₆ compounds whereas the $(Ca_{0.90}, Nd_{0.10})(2)$ cations occupied the B' type site. The type of B-cations ordering results in a partially ordered structure with alternating {111}_c plane occupied exclusively by Sn⁴⁺ cations (2c site) and a random mixture (Ca_{0.90},Nd_{0.10})(2), in 2d site, of Ca²⁺(2) and the remaining Nd³⁺(2) cations (Figure 4). The average < (Ca, Nd)_B-O> distance (2.296 Å) in (Ca_{0.90}, Nd_{0.10})(2)O₆ Octahedra is significantly larger than that for Sn-O bonds (2.050 Å) in SnO₆ as expected from the difference between the six-coordinated radii of (Ca_{0.90}, Nd_{0.10})(2) (0.998 Å) and Sn⁴⁺ (0.69 Å). Octahedral B'-sites are regular whereas the B''-sites are therefore slightly distorted (Table 2).

Table 1. Results of the Rietveld refinement of Nd₂CaSnO₆.

Nd_2CaSnO_6 ([$Nd_{1.90(2)}Ca_{0.10(2)}$] _A [$Nd_{0.10(2)}Ca_{0.90(2)}$] _B ;[$Sn_{1.00}$] _B , O ₆ crystallographic formula)								
Space group: $P2_1/n$; [Z = 2, a = 5.6585(1) Å, b = 5.9254(1) Å, c = 8.1883(2) Å; β = 90.116(1)° V = 274.5(1) Å ³]								
Experimental data	Experimental data							
Temperature, 298 K ; angular range, $10^{\circ} \le 2\theta \le 100^{\circ}$; step scan increment (2 θ), 0.01°								
Zero point (2θ) , -0	Zero point (2θ) , $-0.012(1)^{\circ}$							
Profile parameters:								
Pseudo-voigt func	Pseudo-voigt function, $PV = \eta L + (1-\eta)G; \ \eta = 0.712(2)$							
Half-width parame	Half-width parameters, $U = 0.038(2)$, $V = -0.012(2)$ and $W = 0.0059(1)$							
Conventional Rietveld R-factors, $R_{WP} = 8.9\%$; $R_P = 6.8\%$; $R_B = 3.8\%$; $R_F = 4.2\%$								
Atom	Site	Wyckoff positions			$B_{\rm iso}({\rm \AA}^2)$	Occupancy		
Nd(1)	4e	0.5161(4)	0.5579(2)	0.2479(3)	0.79(5)	0.95(1)		
Ca(1)	4e	0.5161(4)	0.5579(2)	0.2479(3)	0.79(5)	0.05(1)		
Ca(2)	2d	0.5	0	0	0.58(2)	0.45(1)		
Nd(2)	2d	0.5	0	0	0.58(2)	0.05(1)		
Sn	2c	0	0.5	0	0.054(7)	0.50		
O(1)	4e	0.1711(2)	0.2058(2)	-0.0713(2)	0.60(1)	1		
O(2)	4e	0.2989(2)	0.6730(2)	-0.0547(2)	0.60(1)	1		
O(3)	4e 0.3837(2) 0.9482(2) 0.2663(2) 0.60(1) 1							

Figure 4. Crystal structure of a double perovskite in the *P*2₁/n space group showing views down the (a) 110 and (b) 001 directions highlighting the a–a–c+ tilt system used to model each of the reported structures. Red spheres correspond to O sites for a given [Nd_{1.90}Ca_{0.10}]_{*A*}[Nd_{0.10}Ca_{0.90}]_{*B*'}[Sn_{1.00}]_{*B*''}O₆.

These octahedra are rotated around a twofold axis parallel to [110] and a fourfold axis parallel to [001] of the aristotype phase. As a consequence of these rotations the coordination number of (Nd, Ca)_A cations has changed from 12 to 8. In fact, if we consider the first coordination sphere, which includes only cation to oxygen bonds with a distance smaller

than the shortest *A* site to B-site bond distance (i.e., A-B' = 3.315(2) Å), the (Nd, Ca)_A cations within the A-site are eight coordinated (Table 2). It should be pointed out that the percent order, in Nd₂CaSnO₆, can be evaluated from the occupancy parameters obtained by the Rietveld refinements analysis. In fact, zero percent order would have 50% each of *B*' and *B*'' on

each of the octahedral sites of the $A_2B'B''O_6$ double perovskite. For 100% order, there would be 100% of *B*' on the *B*' site and 100% *B*'' on the *B*'' site. For intermediate degrees of order, the degree of cation ordering, within B-sites, is quantified with the long range order parameter abbreviated by (LRO). The expression of LRO is LRO = $[2\times(Occ.)_B-1)\times100]$ where $(Occ.)_B$ is the fractional occupancy of the B' or the B'' cation on the octahedral site that is predominantly occupied by that cation ²⁸⁻²⁹. Given that in $[Nd_{1.90}Ca_{0.10}]_A[Nd_{0.10}Ca_{0.90}]_B'[Sn_{1.00}]_B''O_6$, the B'' sites are fully occupied by Sn atoms, the LRO parameter of Nd₂CaSnO₆ can be evaluated only based on the occupancy for cations in the B'-sites. Since the B' site contain 90% of Ca^{2+} (Table 1), the obtained value of LRO parameter is $[2\times0.90-1]\times100 = 80\%$. Bond valence sum of the A-site cation which includes only the first coordination sphere (eight A-O bonds) agree with the ideal value (Table 2). Note that the slight divergence between observed and calculated bond valence sums, of *B*-site cations, can be related to the disordered distribution of the two atom types within the same crystallographic B' site. Structural data indicate a symmetric coordination environment for the *B*-site ions and nearly comparable *B*'-O and *B*''-O bond distances are observed (Table 2).

Table 2.	Selected	interatomic	distances ((Å) for Nd ₂ CaSnO ₆ .
----------	----------	-------------	-------------	----	--

$([Nd_{1.90(2)}Ca_{0.10(2)}]_A[Nd_{0.10(2)}Ca_{0.90(2)}]_B, [Sn_{1.00}]_B, Ca_{0.10(2)}Ca_{0.10(2)}]_B$	D ₆ crystallographic formula)		
A-sites			
(Nd(1)/Ca(1))-O(1) 2.985(4)	(Nd(1)/Ca(1))-O(3) 2.436(3)		
(Nd(1)/Ca(1))-O(1) 2.682(3)	(Nd(1)/Ca(1))-O(3) 2.356(3)		
(Nd(1)/Ca(1))-O(1) 2.323(3)	(Nd(1)/Ca(1))-O(3) 3.460(3)		
(Nd(1)/Ca(1))-O(1) 3.869 (3)	(Nd(1)/Ca(1))-O(3) 3.693(3)		
(Nd(1)/Ca(1))-O(2) 2.846(4)			
(Nd(1)/Ca(1))-O(2) 2.340(3)			
(Nd(1)/Ca(1))-O(2) 2.776(3)			
(Nd(1)/Ca(1))-O(2) 3.835(3)			
Average < <i>A</i> -O> = 2.590	BVS(A) = 2.2 (should be 2.9)		
B'-sites	B''-sites		
(Ca(2)/Nd(2))-O(1) 2.299(3) x 2	Sn-O(1) 2.078(3) x 2		
(Ca(2)/Nd(2))-O(2) 2.291(2) x 2	Sn-O(2) 2.028(2) x 2		
(Ca(2)/Nd(2))-O(3) 2.299(2) x 2	Sn-O(3) 2.045(2) x 2		
Average $<\!\!B'-\!O\!\!> = 2.296$	Average $<\!\!B''-\!O\!\!> = = 2.050$		
BVS(B') = 2.5 (should be 2.1)	BVS(Sn) = 4.0 (should be 4.0)		

Table 3. Selected bond angles (°) for Nd₂CaSnO₆.

$([Nd_{1.90(2)}Ca_{0.10(2)}]_{A}[Nd_{0.10(2)}Ca_{0.90(2)}]_{B'}[Sn_{1.00}]_{B''}O_{6}$ crystallographic formula)							
A-sites : $(Nd(1)/Ca(1))$ in eight coordination	<i>B</i> '-sites : (Ca(2)/Nd(2))	B ''-sites : Sn					
O(1)-A-O(2) 61.31(2) O(1)-A-O(3) 63.68(2)	O(1)-B'-O(2) 89.85(2)	O(1)-Sn-O(2) 88.44(2)					
O(1)-A-O(2) 68.52(2) O(1)-A-O(3) 74.99(2)	O(1)-B'-O(2) 90.14(2)	O(1)-Sn-O(2) 91.56(2)					
O(1)-A-O(2) 69.15(2) O(1)-A-O(3) 77.43(2)	O(1)- B'-O(3) 85.94(2)	O(1)-Sn-O(3) 89.29(2)					
O(1)-A-O(2) 71.93(2) O(2)-A-O(3) 66.15(2)	O(1)-B'-O(3) 94.50(2)	O(1)-Sn-O(3) 90.70(2)					
O(1)-A-O(2) 78.39(2) O(2)-A-O(3) 67.07(2)	O(2)-B'-O(3) 85.96(2)	O(2)-Sn-O(3) 89.10(2)					
O(1)-A-O(2) 82.64(2) O(2)-A-O(3) 72.18(2)	O(2)-B'-O(3) 94.04(2)	O(2)-Sn-O(3) 90.89(2)					
O(1)-A-O(1) 76.49(2) O(2)-A-O(2) 75.20(2)							
O(3)-A-O(3) 88.25(2)							

Table 4. Powder diffraction data of Nd₂CaSnO₆ (Cu $K\alpha_1$; 1.54060 Å). Diffraction lines with I_{obs.} < 1 are omitted.

hkl	d _{obs.} (Å)	100 I/I ₀	hkl	d _{obs.} (Å)	100 I/I ₀
011	4.8004	10	024	1.6842	8
-101	4.6596	4	-204	1.6601	4
101	4.6507	8	204	1.6569	5
002	4.0941	06	-312	1.6469	1
110	4.0923	07	312	1.6445	1
-111	3.6627	10	-214	1.5947	1
111	3.6584	11	214	1.5918	1
222	3.0520	9	-213	1.5891	1
020	2.9627	25	-133	1.5402	3
-112	2.8965	84	133	1.5393	4
112	2.8922	100	041	1.4577	5

200	2.8293	27	-224	1.4482	5
021	2.7860	7	224	1.4461	5
-121	2.5001	2	141	1.4115	4
121	2.4988	1	-215	1.3763	2
103	2.4564	2	314	1.3460	1
-211	2.4387	2 5 3	-331	1.3459	1
211	2.4361		331	1.3452	1
022	2.4002	1	-241	1.2960	1
-202	2.3298	1	241	1.2956	1
202	2.3254	2	-116	1.2952	2
-113	2.2723	2 3 3	-332	1.2947	1
113	2.2692	3	116	1.2941	1
-122	2.2106	1	332	1.2936	1
122	2.2087	1	420	1.2766	1
004	2.0471	29	-225	1.2764	2 1
220	2.0461	30	-135	1.3757	
023	2.0074	04	-206	1.3756	1
-221	1.9858	05	135	1.3748	1
221	1.9844	05	-243	1.1832	4
-123	1.8928	1	243	1.1823	7
123	1.8910	2	404	1.1627	12
-213	1.8663	2 2 3	-151	1.1485	13
130	1.8648	3	151	1.1484	2 1
213	1.8629	2	017	1.1473	1
-131	1.8185	9	-136	1.1017	1
131	1.8180	9	316	1.0859	3 3 1
311	1.7548	1	027	1.0854	3
-132	1.6975	9	-316	1.0853	1
132	1.6966	9			

Conclusion

The Rietveld refinement, using XRD powder patterns, of Nd₂CaSnO₆ shows clearly that this compound adopts the $P2_1/n$ monoclinic space group. The structure shows that Neodymium and Calcium are divided between the A and B-sites of the ABO_3 perovskite structure. Obtained cationic distribution can be illustrated by the $[Nd_{1.90}Ca_{0.10}]_A[Nd_{0.10}Ca_{0.90}]_{B'}$. $[Sn_{1.00}]_{B'}O_6$ crystallographic formula. Monoclinic structure contains distorted coordination polyhedral of A-site ions, and it is achieved with lower coordination than 12, estimated from the A-O distances. In fact, two groups of distances for A-O lengths are clear, belonging to first (i.e., A-O distances from 2.32 to 2.98 Å) and to the second spheres coordination (i.e., A-O distances from 3.46 to 3.89 Å). The small difference between Calcium and Neodymium ion sizes, respectively in the octahedral (i.e., B-sites) and the eight coordination A-sites, appears to be the driving force of the cationic distribution obtained within the A and B sites of the Nd₂CaSnO₆ perovskite. It appears that the obtained structure distortion results from long-range ordering between Sn in 2c (0 1/2 0) sites and (Ca/Nd) (2) in 2d $(1/2 \ 0 \ 0)$ sites all in the *B*-sites. Cationic ordering distribution observed for atoms in the B-sites may be related to the difference between their ionic radii (i.e., $0.998 \text{ Å for } (Ca^{2+}/Nd^{3+}) (2) \text{ and } 0.69 \text{ Å for } Sn^{4+}) \text{ rather}$ than that between their cationic charge.

- W.E. Pickett and D.J. Singh, Electronic structure and half-metallic transport in the La_{1-x}Ca_xMnO₃ system, Phys. Rev. B, **1996**, 53, 1146.
- 2- K.I. Kobayashi, T Kimura., H. Sawada, K. Terakura and Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure, Nature, **1998**, 395, 677-680.
- 3- R.J. Cava, B. Batlogg, J.J. Krajewski, R. Farrow, L.W. Rupp, A.E. White, K. Short, W.F. Peck and T. Kometani, Superconductivity near 30 K without copper: The Ba_{0.6}K_{0.4}BiO₃ perovskite, Nature, **1988**, 332, 814-816.
- 4- J.B. Goodenough, J.M. Longo, in: Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics. Vol. 4: Magnetic and Other Properties of Oxides and Related Compounds, Part a, Springer, Berlin, **1970**, p. 126.
- 5- P.D. Battle, T.C. Gibb, C.W. Jones and F. Studer, The crystal and magnetic structures of Ca₂NdRuO₆, Ca₂HoRuO₆, and Sr₂ErRuO₆, J. Solid State Chem., **1989**, 78,281-293.
- 6- C.R. Wiebe, J.E. Greedan, P.P. Kyriakou, G.M. Luke, J.S. Gardner, A. Fukaya, I.M. Gat-Malureanu, P.L. Russo, A.T. Savici and Y.J. Uemura, Frustration-driven spin freezing in

- 7- M.T. Anderson, K, B greenwood, G A. Taylor and K.R. Poeppelmeier, Prog. B-cation arrangements in double perovskites, J. Solid State Chem., **1993**, 22, 197-233.
- 8- M. R. Palacin, J. Bassas, J. Rodriguez-Carvajal and P. Gomez-Romero, Syntheses of the Perovskite La₂CuTiO₆ by the Ceramic, Oxide Precursors and Sol-Gel methods. Study of the structure and the Cu-Ti Distribution by X-Ray and Neutron Diffraction, J. Mater. Chem., **1993**, 3(11), 1171-1177.
- 9- R. Ubic, Y. Hu and I. Abrahams, Neutron and electron diffraction studies of La(Zn_{1/2}Ti_{1/2})O₃ perovskite, Acta Crystallogr. B, **2006**, 62, 521–529.
- 10-M. Avdeev, M. P. Seabra and V. M. Ferreira, Crystal Structure of Dielectric Ceramics in the La(Mg_{0.5}Ti_{0.5})O₃-BaTiO₃ System, J. Mater. Res., **2002**, 17, 1112–1117.
- 11-W. A. Groen, F. P. F. Van Berkel and D. J. W. Ijdo, Dineodymium magnesium titanate (IV). A Rietveld refinement of neutron Powder diffraction data, Acta Crystallogr .C, **1986**, 42, 1472-1475.
- 12-M. Azuma, S. Kaimori and M. Takano, High-Pressure Synthesis and Magnetic Properties of Layered Double Perovskites Ln_2CuMO_6 (Ln = La, Pr, Nd, and Sm; M = Sn and Zr), J. Chem. Mater, **1998**, 10, 3124-3130.
- 13-Anderson M. T and Poeppelmeier K. R., Lanthanum copper tin oxide (La₂CuSnO₆): a new perovskite-related compound with an unusual arrangement of B cations, Chem. Mater., **1991**, 3, 476-482.
- 14-C. Sakai, Y. Doi and Y. Hinatsu, Crystal structures and magnetic properties of double perovskite compounds Ca ₂LnRuO ₆ (Ln = Y, La–Lu), J. Alloy Compd., **2006**, 408, 608-612
- 15-X. Yin, Y. Wang, F. Huang, Y. Xia, D. Wan and J. Yao, Excellent red phosphors of double perovskite Ca₂LaMO₆: Eu (M= Sb, Nb, Ta) with distorted coordination environment, J. Solid State Chem., **2011**, 184, 3324–3328.
- 16-A. Faik, I. Urcelay, E. Iturbe-Zabalo and J. M. Igartua, Cationic ordering and role of the A-site cation on the structure of the new double perovskites Ca_{2-x}Sr_xRSbO₆ R=La, Sm and (x=0,0.5,1), J. Mol. Struct., **2010**, 977, 137-144.
- 17-S. Halder, Md. Sariful Sheikh, B. Ghosh and T.P. Sinha, Octahedral distortion induced phonon vibration and electrical conduction in A 2NdSbO₆

(A = Ba, Sr, Ca), J. Mater. Chem. Phys., **2017**, 199, 508-521.

- 18-A. Aatiq, Synthesis and crystal structure of the new perovskite CaLa $_2$ CaTi $_2$ O $_9$ (= (Ca $_{1/3}$ La $_{2/3}$)_A(Ca $_{1/3}$ Ti $_{2/3}$)_BO $_3$), Solid State Sci. , **2003**, 5, 745-749.
- 19-A. Aatiq and A. Boukhari, Synthesis and structural study of the new perovskite series CaLn₂ZnTi₂O₉ (= (Ca_{1/3}Ln_{2/3})_{*A*}(Zn_{1/3}Ti_{2/3})_{*B*}O₃) (Ln=La, Pr, Nd, Eu), Mater. Lett., **2004**, 58, 2406–2411.
- 20-E. Iturbe-Zabalo, J.M. Igartua, A. Aatiq, and V. Pomjakushin, A structural study of the CaLn₂CuTi₂O₉ (Ln = Pr, Nd, Sm) and BaLn₂CuTi₂O₉ (Ln =La, Pr, Nd) triple perovskite series, J. Mol. Struct., **2013**, 1034, 134–143.
- 21-J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter., **1993**, 192, 55-69.
- 22-S. Geller, Crystal Structure of Gadolinium Orthoferrite GdFeO₃, J. Chem. Phys., **1956**, 24, 1236-1239.
- 23-I. Levin, L.A. Bendersky, J.P. Cline, R.S. Roth and T.A. Vanderah, Octahedral Tilting and Cation Ordering in Perovskite-Like Ca₄Nb₂O₉=3•Ca(Ca_{1/3}Nb_{2/3})O₃ Polymorphs, J. Solid State Chem., **2000**, 150, 43-61.
- 24-I. Levin, J.Y. Chan, R.G. Geyer, J.E. Maslar and T.A. Vanderah, Cation Ordering Types and Dielectric Properties in the Complex Perovskite Ca(Ca _{1/3}Nb _{2/3})O ₃, J. Solid State Chem. , (**2001**), 156 ,122-134.
- 25-R.D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, **1976**, 32,751-767.
- 26-V. M. Goldschmidt, Die Gesetze der Krystallochemie, J. Die Naturwissenschaften., 1926, 14, 477-485.
- 27-I.D. Brown and D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallogr. B, **1985**, 41, 244-247.
- 28-P.W.Barnes, M. W. Lufaso and P. M. Woodward, Structure determination of $A_2M^{3+}TaO_6$ and $A_2M^{3+}NbO_6$ ordered perovskites: octahedral tilting and pseudo symmetry, Acta Crystallogr. B, **2006**, 62, 384-396.
- 29-P. Woodward, R.D. Hoffmann and A.W. Sleight, Order–disorder in A₂M³⁺M⁵⁺O₆ Perovskites, J. Mater. Res., **1994**, 9, 2118-2127.