Elaboration and structural characterization of phosphate glasses with composition 37.5Na$_2$O-25[(1-x)MgO-xNiO]-37.5P$_2$O$_5$ (0≤x≤1)

Laila Lamrous 1, Redouane Farid 1, Abdelaziz El Jazoul 1,*, Saida Krimi 2,*, Mustapha Haddad 3, Hassane Oudadesse 4, Said Sebi 1 and Michel Couzi 5

1 Hassan II University of Casablanca, Faculty of Sciences Ben M’sik, Chemistry Department, LCMS/LCPCE – URAC17, BP 7955, 20702 Casablanca, Morocco
2 Hassan II University of Casablanca, Faculty of Sciences Ain chock, Chemistry Department, LPCMI, B. P. 5366 Maarif 20000, Morocco
3 Laboratoire de Spectrométrie des Matériaux et Archéomatériaux (LASMAR), URAC 11, Université Moulay Ismail, Faculté des Sciences, B.P 11201 Zitoune, Meknes 50000, Morocco
4 Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
5 Université de Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, Talence cedex, France

Abstract: Phosphate glasses, with molar compositions 37.5Na$_2$O-25[(1-x)MgO-xNiO]-37.5P$_2$O$_5$ (0 ≤ x ≤ 1), have been prepared using the conventional melt quenching technique. The free nickel glass is colorless while the glasses containing nickel are yellow. The effect of Ni$^{2+}$ ions on structural and physico-chemical properties of these glasses has been investigated by XRD, DTA, EPR, Raman, FTIR spectroscopies and by density and chemical durability measurements. Substitution of Ni$^{2+}$ for Mg$^{2+}$ strengthens the glass network, as shown by the decrease of the molar volume, the increase of the glass transition temperature, and the improvement of the chemical durability. This behavior is a consequence of the replacement of Mg-O bonds by more covalent Ni-O bonds. The glass structure consists of tri-phosphate (P$_3$O$_9$)$_2$ and di-phosphate (P$_2$O$_7$)$^+$ groups, and Mg/NiO$_6$ octahedra, with Mg-O-P and Ni-O-P linkages.

Keywords: NaMg/Ni-Phosphate glasses, Raman/FTIR, EPR, Chemical durability.

Introduction

Phosphate glasses are of great interest because of their physical and chemical properties, such as optical devices 1-2, waveguides 3 and glass to metal seals 4. Also, the phosphate glasses become particularly attractive in the medical field for their poor durability. Indeed, the solubility of phosphate glasses can be used to create bioactive materials particularly attractive in the medical field for their chemical durability. This series of phosphate glasses containing Mg$^{2+}$ or Ni$^{2+}$ ions have been investigated, and the number coordination of these ions was found to be six 5-10. The average Ni-O distance in (NaPO$_4$)$_{3-x}$(NiO)$_x$ (0.008 ≤ x ≤ 0.30) glasses is 2.06 Å 10. Infrared and Raman spectra of (50-x/2)Na$_2$O–xMgO–(50-x/2)P$_2$O$_5$ [(100-x)NaPO$_4$–xMgO] (0 ≤ x ≤ 42.8 mol%, 3 ≤ O/P ≤ 3.75) glasses have been reported by Oueslati et al 11. The composition x = 0 (NaPO$_4$, O/P = 3) corresponds to the metaphosphate characterized by infinite linear chains where each PO$_4$ tetrahedron shares two oxygen atoms (Q3) with two other PO$_4$ tetrahedra. Addition of MgO content induces an evolution of structural units from Q3 (metaphosphate chains) to Q1 (P$_2$O$_7$ diphosphate groups) and Q0 (PO$_4$ monophosphate groups) indicating the depolymerization of phosphate chains 11. This series includes the trifluorophosphate composition 37.5Na$_2$O-25MgO-37.5P$_2$O$_5$ (Na$_3$MgP$_2$O$_{10}$, O/P = 3.33). We focus our present investigation on this composition, due to the importance of the trifluorophosphate (P$_3$O$_9$) in biological and medical applications 12-13.

*Corresponding author: Abdelaziz El Jazoul, Saida Krimi
Email address: eljazoul_elabdelaziz@yahoo.fr, krimisaaida@yahoo.fr
DOI: http://dx.doi.org/10.13171/mjc7618121512aejsk

Available free online at www.medchem.com

Mediterranean Journal of Chemistry 2019, 7(6), 416-422

Received November 5, 2018
Accepted November 28, 2018
Published December 15, 2018
We can cite the role of the adenosine triphosphate (ATP) in the biochemistry of all known living beings. ATP provides the energy needed for chemical reactions of metabolism, locomotion, cell division, or the active transport of chemical species across biological membranes. To release this energy, ATP molecule is cleaved, by hydrolysis, into adenosine diphosphate (ADP). The cells then regenerate ATP from ADP. It is also known that the introduction of paramagnetic transition ions, such as Mn$^{2+}$, Ni$^{2+}$, and Cu$^{2+}$, in compounds induces photoluminescence and improves catalytic properties.14,15 The present work concerns a new series of mixed Mg-Ni phosphate-based glasses 37.5Na$_2$O-25[(1-x)MgO-xNiO]-37.5P$_2$O$_5$ (Na$_x$Mg$_{1-x}$Ni$_x$P$_{2.5}$O$_{10}$O$_2$), 0 ≤ x ≤ 1. It reports their synthesis method and their characterization by X-ray diffraction (XRD), differential thermal analysis (DTA), electronic paramagnetic resonance (EPR), Raman, Fourier transform infrared (FTIR) spectroscopies and by density and chemical durability measurements.

Experimental and characterization

Synthesis

Glass samples with chemical formula 37.5Na$_2$O-25[(1-x)MgO-xNiO]-37.5P$_2$O$_5$ (0 ≤ x ≤ 1) were prepared in the air by the conventional melt quenching technique. Sodium carbonate (Na$_2$CO$_3$, 99.4%), magnesium oxide (MgO, 99.5%), nickel oxide (NiO, 99.8%), and ammonium di-hydrogen phosphate (NH$_4$H$_2$PO$_4$, 99.5%) were used as starting materials. The mixtures, corresponding to the desired compositions, were initially heated in a platinum crucible at 200°C, 400°C and 600°C for 12 h to decompose reagents. The temperature was then progressively put to 950°C and held constant at this value for 15 min. The liquid was then poured on a metallic plate preheated at 150°C, to avoid the thermal shock and the break of glasses. Before characterization, all glasses were annealed at (7–20) °C to eliminate residual stresses. Fig. 1 shows photographs of the glasses prepared under the conditions above, and the corresponding powders obtained by grinding pieces of glasses. The free nickel glass (x = 0) is colorless while glasses containing nickel are yellow-brown.

<table>
<thead>
<tr>
<th>Composition</th>
<th>x = 0</th>
<th>x = 0.25</th>
<th>x = 0.5</th>
<th>x = 0.75</th>
<th>x = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Photographs of 37.5Na$_2$O-25[(1-x)MgO-xNiO]-37.5P$_2$O$_5$ (0 ≤ x ≤ 1) glasses and powders obtained by grinding pieces of glasses.

Characterization

XRD measurements were done at room temperature with a powder diffractometer (Advance D8) using Cu Kα radiation. Data were collected in the 2θ range of 10-60° with a step of 0.02 and a count time of 12s. Glass transition and crystallization temperatures (T$_g$, T$_c$) were measured on 22–35 mg of samples using the DTG-60H with a heating rate of 10 °C/min, in a platinum crucible. The density (ρ) was measured on bulk glasses by the Archimedes method, using diethyl phthalate as the immersion liquid. It was calculated from the following relation: ρ = (m$_f$/(m$_i$-m$_f$)) ρ$_h$, where m$_i$ is the mass of the sample in air, m$_f$ the mass of sample immersed in the diethyl phthalate and ρ$_h$ the density of the diethyl phthalate at room temperature. Three measurements were made for each glass. The average values are reported Table 1. The accuracy of measurements is about ± 0.03 g/cm3. The molar volume was calculated from the relation: V$_m$ = M/ρ (M is the molar mass of the glass). Raman spectra were carried out using a spectrometer LabRam HR Evolution - Horiba Scientific, with a laser source (λ= 532 nm) under the confocal microscope with an X50 objective and power to sample 8 mW. FTIR spectra were recorded on an Equinox 55 Spectrometer in the frequency range 400 - 4000 cm$^{-1}$ with a resolution of 2 cm$^{-1}$. Glass powder was mixed and ground with KBr (potassium bromide) in a Glass/KBr mass ratio of 1/200. This mixture is then compressed to form a translucent pastille to be placed in the IR beam. EPR spectra were recorded at room temperature, using a Bruker spectrometer, working in X band, with a frequency of 9.788 GHz. Chemical durability tests were carried out on bulk samples using distilled water at 90°C. The weight loss was measured after 24, 48, 96, 158, and 230 hours of immersion. The dissolution rate of the glasses (AR) was calculated from the relationship: ΔR = Δm/S t, (Δm: weight loss, S: glass surface, t: time).
Results and discussion

XRD, density and molar volume

Table 1 presents the major interesting measured properties for 37.5Na₂O-25[(1-x)MgO-xNiO]-37.5P₂O₅ (0 ≤ x ≤ 1) glasses. Their X-ray diffraction patterns (Fig. 2a) indicate an amorphous state for all compositions. Fig. 2b shows XRD patterns of compounds obtained, after heating the glasses at Tc (°C) for 12 h. The values of Tc (Table 1) were determined by DTA. Crystalization of these glasses leads to the formation of both NaPO₃ (ASTM powder diffraction data file, N° 00-01-0648) and Na₂NiP₂O₇ (ASTM powder diffraction data file, N° 00-030-1225) crystalline phases with some unidentified peaks. The peaks observed in the glass spectrum of free nickel composition (x = 0; NaMgP₂O₁₀) do not correspond to any known crystalline phase in the base of X-ray data. Fig. 3 shows the variation of the density (ρ) and the molar volume (Vₚ) versus NiO content of glasses. The replacement of MgO by NiO induces an increase of density due to the molecular weight of NiO (M_NiO = 74.7 g/mol) higher than that of MgO (M_MgO = 40.3 g/mol). The decrease of the molar volume (Table 1), is because the ionic radius of Ni²⁺ ions (0.69 Å) is lower than that of Mg²⁺ ions (0.73 Å). This decrease of molar volume indicates that Ni²⁺ ions reticulate the vitreous network suggesting the increase in the rigidity of the structure and formation of Ni-O-P linkage more covalent than Mg-O-P one. Indeed, the evolution of the molar volume, as a function of the oxide content introduced into the glass, reflects the effect of this oxide within the vitreous network: i) if the molar volume remains constant, the introduced cations are placed in the interstitial sites of the glass network, as observed in ZnO-NaPO₃ glasses, ii) a decrease in Vₚ shows that the introduced cations reinforce the glass network which becomes more rigid; as observed in Na₂O-MO-P₂O₅ (M = Mg, Mn, Cu, Zn) glasses (0.17-19); iii) an increase in Vₚ is indicative of an expansion of the network, this case has been observed in 50P₂O₅(50-x)Na₂O-xCaO glasses.

Differential thermal analysis

Fig. 4 shows DTA curves of 37.5Na₂O-25-[(1-x)MgO-xNiO]-37.5P₂O₅ (x = 0, 0.5, 1) glasses. The value of Tg (Table 1) increases from 364 °C for x = 0 to 417 °C for x = 1, which implies that substitution of Ni²⁺ ions for Mg²⁺ ions strengthens the vitreous network, in good agreement with the decrease, observed previously for the molar volume. This increase of Tg can be explained by the high field strength, ∆F (∆F = zr²; with z is the valence cation, and r is the ionic radius) of Ni²⁺ (4.2 Å²) compared to that of Mg²⁺ (3.86 Å²).

Table 1. Nominal molar compositions, molar mass (M), density (ρ), molar volume (Vₚ) and characteristic temperatures (Tg, Tc) of 37.5Na₂O-25[(1-x)MgO-xNiO]-37.5P₂O₅ (0 ≤ x ≤ 1) glasses.

<table>
<thead>
<tr>
<th>Molar composition (%mol)</th>
<th>Molar mass (g/mol)</th>
<th>Density (g/cm³)</th>
<th>Molar volume (cm³/mole)</th>
<th>Tg (± 5 °C)</th>
<th>Tc (± 5 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O 25 0 37.5</td>
<td>86.55</td>
<td>2.55</td>
<td>33.9 ± 0.4</td>
<td>364</td>
<td>500</td>
</tr>
<tr>
<td>37.5 18.75 6.25 37.5</td>
<td>88.70</td>
<td>2.79</td>
<td>31.8 ± 0.3</td>
<td>390</td>
<td>502</td>
</tr>
<tr>
<td>37.5 12.5 12.5 37.5</td>
<td>90.85</td>
<td>3.12</td>
<td>29.1 ± 0.3</td>
<td>393</td>
<td>486</td>
</tr>
<tr>
<td>37.5 6.25 18.75 37.5</td>
<td>92.99</td>
<td>3.33</td>
<td>27.9 ± 0.3</td>
<td>415</td>
<td>521</td>
</tr>
<tr>
<td>37.5 0 25 37.5</td>
<td>95.14</td>
<td>3.90</td>
<td>24.4 ± 0.2</td>
<td>418</td>
<td>523</td>
</tr>
</tbody>
</table>

Fig. 2. X ray diffraction of (a) 37.5Na₂O-25[(1-x)MgO-xNiO]-37.5P₂O₅ (0 ≤ x ≤ 1) glasses and of (b) compounds obtained after heating these glasses at Tc, for 12 hours.
EPR spectroscopy

EPR technique is an indirect method for the study of glass structure with transition metal ions as paramagnetic probes. We use this technique to check the oxidation number of nickel ions and to have information on the sites they occupy in the glass structure. EPR spectrum of 37.5Na₂O-12.5MgO-12.5NiO-37.5P₂O₅ glass (x = 0.5), recorded at room temperature, is shown in Fig. 5. It exhibits three lines centred at g ≈ 2.0, 2.2 and 4.3. It is known that 3d transition elements as Co and Ni introduced in glasses often contain iron impurities. Moreover, Fe³⁺ ion is very sensitive to EPR. The signal at g ≈ 4.3 is associated to isolated Fe³⁺ ions at the rhombic site; the other one at g ≈ 2.0 is assigned to two or more Fe³⁺ ions coupled together, as clusters in the glass structure, with Fe³⁺-Fe³⁺ interaction.²¹,²² The value of the signal at g ≈ 2.2 is close to those obtained, at room temperature, for Ni²⁺ doped sodium phosphate glasses NaₓO-P₂O₅; Ni²⁺ (g = 2.28) and Ni²⁺ doped perovskite YAlO₃; Ni²⁺ (g = 2.16).²³,²⁴ It is attributed to Ni²⁺ ions in octahedral sites.

Infrared and Raman spectroscopies

FTIR and Raman spectra of 37.5Na₂O-12.5MgO-xNiO-37.5P₂O₅ (0 ≤ x ≤ 1) glasses (Fig. 6) have similar shapes and show broad bands characteristic of the structural disorder of glasses. Band wave numbers and their assignments are reported in Table 2. Raman and FTIR spectra for the free nickel composition (x = 0) are similar to those reported by Oueslati et al.¹¹. Raman spectra present a weak band at ~ 1270 cm⁻¹, a very strong and broad band between 1080 and 1200 cm⁻¹ with a maximum around 1160 cm⁻¹ and a shoulder at ~ 1120, a band with medium intensity around 1040 cm⁻¹, a shoulder at ~ 970 cm⁻¹, a strong and broad band between 650 and 800 cm⁻¹ with a maximum at ~ 700 cm⁻¹, a set of bands with low intensity between 450 and 600 cm⁻¹, and a broad band between 250 and 450 cm⁻¹ centered at ~ 350 cm⁻¹. FTIR peaks are observed at about, 3450, 1630, 1260, 1140, 1040, 990, 890, 720 and 550 cm⁻¹. The peaks around 1270 cm⁻¹ and 1160 cm⁻¹ are attributed respectively to the asymmetric stretch νₐ (PO₂⁻) and the symmetric stretch νₛ (PO₂⁻) of the two non-bridging oxygen atoms bonded to a phosphorus atom in phosphate tetrahedron.²⁵ The band at ~ 1040 cm⁻¹ is assigned to the symmetric stretch νₛ (PO₃) of PO₃ end groups. Bands observed in 850-990 cm⁻¹ and 650-800 cm⁻¹ regions are attributed to the asymmetric vibrations νₐs (P-O-P) and symmetric stretch νₛ (P-O-P) respectively.²⁶,²⁷ The bands between 450 and 600 cm⁻¹ are attributed.
to bending vibrations δ(POP) of phosphate P-O-P bridges. The bands observed in 650-800 and 450-600 regions can also be assigned to vibrations of Ni-O bonds, as reported for LiNiPO$_4$ 28 and R$_2$BaNiO$_5$ (R=Y, Ho, Er OR Tm) 29 where Ni$^{2+}$ ions occupy octahedra sites. The broad Raman band centred at ~350 cm$^{-1}$ is assigned to lattice vibrations. The infrared spectra bands observed around 1630 and 3450 cm$^{-1}$ are attributed respectively to O-H bending vibrations and vibrations of H$_2$O molecules. 30. We notice that some peaks shift toward lower frequencies when Ni$^{2+}$ ions replace Mg$^{2+}$ ions. The IR peak attributed to ν_1(PO$_2$) shifts from 1144 cm$^{-1}$ for the composition x = 0 (Na$_3$MgP$_2$O$_9$) to 1112 cm$^{-1}$ for the composition x = 1 (Na$_3$NiP$_2$O$_9$), the Raman peak assigned to ν_1(PO$_3$) shifts from 1042 cm$^{-1}$ for x = 0 to 1035 cm$^{-1}$ for x = 1, and the Raman shoulder attributed to ν_2(PO$_3$) moves from 1119 to 1106 cm$^{-1}$. This result implies that the phosphate units interact with Mg$^{2+}$ and Ni$^{2+}$ ions. As Ni-O bond is more covalent than an Mg-O bond, the antagonistic phosphorus-oxygen bond linked to Ni$^{2+}$ ion (P-O-Ni) is longer than that linked to Mg$^{2+}$ ion (P-O-Mg). This explains the P-O vibration shifts toward low wave numbers, because the vibration frequency of a bond is inversely proportional to its distance.

![Figure 6](image_url)
Figure 6. (a) FTIR and (b) Raman spectra of 37.5Na$_2$O-25[(1-x)MgO-xNiO]-37.5P$_2$O$_5$ (0 ≤ x ≤ 1) glasses

<p>| Table 2. Raman band assignments of 37.5Na$_2$O-25[(1-x)MgO-xNiO]-37.5P$_2$O$_5$ (0 ≤ x ≤ 1) glasses |
| w: weak, vw: very weak, m: medium, s: strong, vs: very strong, sh: shoulder. |</p>
<table>
<thead>
<tr>
<th>Wave number (cm$^{-1}$)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0</td>
<td>FTIR</td>
</tr>
<tr>
<td>3459 vs</td>
<td>-</td>
</tr>
<tr>
<td>1627 w</td>
<td>-</td>
</tr>
<tr>
<td>1261 vw</td>
<td>1259 vw</td>
</tr>
<tr>
<td>1144 w</td>
<td>1159 vs (1080-1200)</td>
</tr>
<tr>
<td>-</td>
<td>1119 sh</td>
</tr>
<tr>
<td>1039 vw</td>
<td>1042 m</td>
</tr>
<tr>
<td>990 vs (650-800)</td>
<td>990 vs (650-800)</td>
</tr>
<tr>
<td>720 m</td>
<td>700 s (650-800)</td>
</tr>
<tr>
<td>546 vs</td>
<td>450-600 vw</td>
</tr>
<tr>
<td>-</td>
<td>341 m (250-450)</td>
</tr>
</tbody>
</table>

Chemical durability

The dissolution rate (ΔR) versus NiO content and the weight loss in water solution with time, for 37.5Na$_2$O-25[(1-x)MgO-xNiO]-37.5P$_2$O$_5$ (0 ≤ x ≤ 1) glasses, are shown in Figure 7. The dissolution rate (ΔR) decreases from 3.78·10$^{-4}$ g·cm$^{-2}$·h to 0.76·10$^{-4}$ g·cm$^{-2}$·h, as the NiO is added in the glasses. The weight loss decreases when Ni$^{2+}$ replaces Mg$^{2+}$. This decrease is due to the increasing number of Ni-O-P more water resistant than Mg-O-P. This result is in good agreement with the decrease of the molar volume and the increase of the glass transition temperature when Ni$^{2+}$ ions are introduced in the glasses.
Conclusion

Phosphate glasses having compositions 37.5Na2O-25[(1-x)MgO-xNiO]-37.5P2O5 (0 ≤ x ≤ 1) were synthesized and investigated to probing the effects on glass structure and properties when substituting Ni2+ ions for Mg2+ ions. The EPR spectroscopy study reveals an octahedral environment for Ni2+ in the glass network. The decrease of molar volume and the increase glass transition temperature versus NiO content implies the reticulation of the glass network due to the replacement of Mg-O bonds by the more covalent Ni-O bonds. These results were confirmed by the increase of the chemical durability.

References

14 - A. Thulasiramudu, S. Buddhudu, Optical characterization of Mn2+, Ni2+ and Co2+ ions...

29- A. de Andres, J. L. Martinez, Vibrational study of R₂BaNiO₅ (R=Y, Ho, Er or Tm), NiO₅ one-dimensional chains, and Tm₂BaNiO₅, NiO₅ pyramids, Solid State Com., 1992, 82, 931-937.