

Mediterranean Journal of Chemistry 2020, 10(6), 553-567

Comparative study between the Titanium Phosphate TiP2O7 and the Phosphate Fertilizers in the catalysis of the Quinazolin-4(3H)-one derivatives synthesis

Youssef Merroun ^{1,*}, Soukaina Chehab ¹, Tourya Ghailane ¹, Rachida Ghailane ¹, Said Boukhris ¹, Nouzha Habbadi ¹, Amina Hassikou ¹, Brahim Lakhrissi ² and Abdelaziz Souizi ^{1,*}

¹ University of Ibn Tofail, Faculty of Science, Laboratory of Organic, Organometallic and Theoretical Chemistry Po Box 133, 14000 Kenitra, Morocco

² University of Ibn Tofail, Faculty of Science, Laboratory of Agricultural Resources, Polymer and Process Engineering, Po Box 133, 14000 Kenitra, Morocco

Abstract: A simple and efficient method for the synthesis of quinazolin-4(3H)-one derivatives via condensation of anthranilamide with aromatic aldehyde catalyzed by monoammonium phosphate (MAP), diammonium phosphate (DAP), and triple superphosphate (TSP), were developed. The modification of these three phosphate fertilizers using titanium tetrachloride (TiCl₄) has increased their catalytic efficiency. The prepared titanium phosphate (TiP₂O₇) was characterized using microscopic and spectroscopic methods, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and infrared spectroscopy (IR). The TiP₂O₇ was applied for the first time as a heterogeneous catalyst in quinazolin-4(3H)-ones synthesis. High yields and short reaction times were observed in the determined optimal condition (solvent nature, volume, and catalyst amount). This study shows that the TiP₂O₇ presents an exciting catalytic activity and long-term durability compared to those of MAP, DAP, and TSP.

Keywords: heterogeneous catalyst; quinazolin-4(3H)-ones; TiP₂O₇; recyclability.

1. Introduction

The quinazolin-4(3H)-one derivatives present an important class of heterocyclic compounds, which attracted considerable attention in these last years, due to their pharmacological and biological activities such as antitumor drugs ¹, antibacterial ², anti-hypertensive ³, anti-inflammatory ⁴, anti-HIV ⁵, antifungal ⁶, nonpeptide CCK-B antagonists ⁷, antiallergic ⁸, insecticidal ⁹, and inhibition of humane erythrocyte purine nucleoside phosphorylase ¹⁰. In addition, the quinazolin-4(3H)-ones are the basic building blocks in the synthesis of natural products ¹¹ and the constituents of some isolated natural alkaloids ¹².

Due to the importance of quinazolin-4(3H)-one derivatives, several processes for their Synthesis were developed in the presence or absence of the catalyst. Indeed, the quinazolin-4(3H)-one derivatives were previously synthesized by the thermolysis of 3-arylideneamine-1,2,3-benzotriazine-4-ones in paraffin oil at 300°C¹³ or condensation of anthranilamide with aldehydes, ketones or isatoic anhydride with ammonium acetate using various catalysts such as ionic liquid [BDBIm]Br¹⁴,

Sc(OTf)₃ ¹⁵, TiCl₄-Zn ¹⁶, FeCl₃.6H₂O ¹⁷, Ni(NO₃)₃.3H₂O ¹⁸, CuCl₂ in ethanol ¹⁹, p-toluenesulfonic acid/DDQ ²⁰ and SbCl₃ under microwave irradiation ²¹. Recently different catalysts were reported, such as sulfated MOF-808 ²², H₃PO₃ ²³, FeCl₃.6H₂O- H₂O/PEG-400 ²⁴, Cu@PEI-MGO ²⁵ and Pd(PPh₃)₄ ²⁶.

Most of these methods present some disadvantages, such as low yields, hard reaction conditions, prolonged reaction time, and the use of expensive, non-recyclable, or homogeneous catalysts. Therefore, the development of a simple, economical, and efficient preparation method is highly desirable. For this, the application of heterogeneous catalysts, which are known by their comfortable handing, simple workup, and recyclability, is considered the best method for the quinazolin-4(3H)-ones synthesis.

As a continuation of the previous works developed by our researchers $^{27-39}$, which consist on the valorization of Moroccan phosphates in the field of organic synthesis, and the development of green and sustainable chemistry, this paper reports the first and an easy preparation method for TiP₂O₇ from the modifications of phosphate fertilizers MAP, DAP and

**Corresponding author: Youssef Merroun, Abdelaziz Souizi Email address: <u>youmerroun@yahoo.com, souizi@yahoo.com</u> DOI: <u>http://dx.doi.org/10.13171/mjc106020201368ym</u>* Received February 29, 2020 Accepted April 26, 2020 Published June 20, 2020 TSP by titanium tetrachloride (TiCl₄). The characterization of TiP_2O_7 was realized using spectroscopic and microscopic technics such as XRD, IR, SEM, and EDX.

Due to the chemical stability, non-hazardous nature, relatively low cost, and easy availability of this support ⁴⁶, it has been used previously by other researchers as electrode material ⁴⁰, solid electrolyte ⁴¹, fuel cell ⁴², a negative electrode for aqueous lithium-ion batteries ⁴³, and photocatalyst ^{44,45}.

The novelty of the present study is the application of TiP_2O_7 for the first time as a heterogeneous catalyst in the quinazoline-4(3H)-ones derivatives synthesis.

The catalytic activity of the prepared support (TiP_2O_7) has been compared with that of MAP, DAP, and TSP used in the quinazoline-4(3H)-one derivatives synthesis.

2. Experimental

2.1. Materials and Instrumentation

The reagents and solvents were purchased from SIGMA ALDRICH. For all reactions, the purity of the quinazolin-4(3H)-one derivatives were monitored by thin-layer chromatography (TLC) using aluminum layers coated with F254 silica gel (Merck) plates. The

melting points were recorded on a hot Kofler. ¹H NMR and ¹³C NMR spectra were recorded in Brucker spectrometer in the presence of DMSO-d₆ at 300 and 75 MHz, respectively. The X-ray diffraction spectra were obtained by using a PANalytical X'Pert3 Powder diffractometer operated at 45 kV and 40 mA with CuK α radiation (λ = 1.54178 Å). Infrared Spectrum was made on a VERTEX 70 spectrometer using KBr pellets. The Scanning Electronic Microscopy (SEM) and EDX analysis were carried out on VEGA3 TESCAN microscope equipped with an energy dispersive X-ray spectrometer with an accelerating potential of 15 kV, and a beam current of 20 mA. The catalyst diameters were determined from the SEM micrographs at random locations by using Image J software.

2.2. Preparation of TiP₂O₇

The modification of the phosphates fertilizer MAP, DAP, or TSP was realized by adding titanium tetrachloride (TiCl₄) (ratio of TiCl₄ / phosphate fertilizer of 1/2). The mixture was agitated for one hour, then evaporated under vacuum. The solid obtained was dried at 150°C for one night, ground and calcined at 500°C for two hours to get TiP₂O₇ which is then crushed, sieved, and stored in a flacon. Figure 1 shows the TiP₂O₇ preparation method.

Figure 1. Different steps of titanium phosphate preparation

2.3. General Procedure for quinazolin-4(3H)-one derivatives synthesis

In a round bottom flask of 50 mL, 1 mmol of aromatic aldehyde and 1 mmol of anthranilamide was dissolved in DMF (1 mL) in the presence of MAP, DAP, TSP or TiP₂O₇ as a catalyst and heated at reflux. The reaction was monitored by thin-layer chromatography (TLC) (chloroform/methanol, 8/2). After completion of the reaction, the mixture was cooled at room temperature. Then, dichloromethane (5 mL) was added to the mixture to separate the catalyst by simple filtration; the filtrate was evaporated until the precipitates were formed. The product was purified by recrystallization with ethanol to obtain the quinazolin-4(3H)-one derivatives. The catalyst may be reactivated later by washing with ethanol to remove the products that may be present on its surface and then dried before being reused.

The products obtained were characterized on the basis of comparison of their melting points and their ¹H and ¹³C NMR spectroscopic data with those reported in the literature, which show a good agreement ⁴⁷⁻⁵⁰.

2.4. Characterization Data of All Compounds 2-(4-chlorophenyl)quinazolin-4(3H)-one (3a)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm): 12.63 (s, 1H, NH), 8.14-8.21 (m, 3H, H-Ar), 7.85 (t, J=7.6 Hz, 1H, H-Ar), 7.74 (d, J=7.8 Hz, 1H, H-Ar), 7.62 (d, J=8.7 Hz, 2H, H-Ar), 7.54 (t, J=7.2 Hz, 1H, H-Ar).

¹³C NMR (75 MHz, DMSO-d₆) δ(ppm): 162.68, 151.82, 148.99, 136.76, 135.14, 132.02, 130.09, 129.16, 127.96, 127.25, 126.34, 121.45.

2-(4-nitrophenyl)quinazolin-4(3H)-one (3b)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm): 12.84 (s, 1H, NH), 8.35-8.43 (m, 4H, H-Ar), 8.18 (d, J=7.8 Hz, 1H, H-Ar), 7.88 (t, J=8.1 Hz, 1H, H-Ar), 7.80 (d, J=7.9 Hz, 1H, H-Ar), 7.58 (t, J=7.51 Hz, 1H, H-Ar).

¹³C NMR (75 MHz, DMSO-d₆) δ(ppm): 162.57, 151.45, 149.43,148.77, 139.01, 135.28, 129.78, 128.21, 127.84, 126.40, 124.13, 121.70.

2-(4-dimethylaminophenyl)quinazolin-4(3H)-one (3c)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm): 12.01 (s, 1H, NH), 8.08-8.14 (m, 3H, H-Ar), 7.77 (t, J=7.8 Hz, 1H, H-Ar), 7.65 (d, J=8.1Hz, 1H, H-Ar), 7.41 (t, J=7.5Hz, 1H, H-Ar), 6.80 (d, 2H, J=8.7Hz, H-Ar), 3.01 (s, 6H, N(CH₃)₂).

¹³C NMR (75 MHz, DMSO-d₆) δ(ppm): 162.78, 152.86,152.78, 149.90, 134.73, 129.35, 127.47, 126.25, 125.75, 120.96, 119.52, 111.76, 40.11.

2-(4-methylphenyl)quinazolin-4(3H)-one (3d)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm): 12.50 (s, 1H, NH), 8.09-8.17 (m, 3H, H-Ar), 7.83 (t, J=7.6Hz, 1H, H-Ar), 7.72 (d, J=8.1Hz, 1H, H-Ar), 7.51 (t, J=7.2Hz, 1H, H-Ar), 7.36 (d, J=7.8 Hz, 2H, H-Ar), 2.38 (s, 3H, CH₃).

¹³C NMR (75 MHz, DMSO-d₆) δ(ppm):162.76, 152.70,149.27, 141.94, 135.05, 130.05, 129.67, 127.86, 127.28, 126.87, 126.32, 121.34, 21.47.

2-phenylquinazolin-4(3H)-one (3e)

¹H NMR (300 MHz, DMSO-d₆)δ(ppm): 12.51 (s, 1H, NH), 8.15-8.21 (m, 3H, Ar-H), 7.84 (t, J=7.5Hz, 1H, Ar-H), 7.75 (d, J=8.1Hz, 1H, Ar-H), 7.52-7.63 (m, 4H, Ar-H).

¹³C NMR (75 MHz, DMSO-d₆) δ(ppm):162.80, 152.84, 149.14, 135.09, 133.19, 131.88, 129.09, 128.24, 127.90, 127.07, 126.63, 121.42.

2-(2-hydroxyphenyl)quinazolin-4(3H)-one (3f)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm): 12.62 (s, 1H, NH), 9.90 (s, 1H, OH), 8.23 (d, J=7.9Hz, 1H, H-Ar), 8.16 (d, J=7.8 Hz, 1H, H-Ar), 7.87 (t, J=7.6Hz, 1H, H-Ar), 7.77 (d, 1H, H-Ar), 7.56 (t, J=7.4Hz, 1H,

H-Ar), 7.47 (t, J=7Hz, 1H, H-Ar), 7.01 (m, 2H, H-Ar). ¹³C NMR (75 MHz, DMSO-d₆) δ (ppm):161.45, 160.01, 153.84, 146.11, 135.20, 133.74, 127.76,126.93, 126.07, 120.72, 118.88, 117.91, 113.83.

2-(4-hydroxy-3-methoxyphenyl)quinazolin-4(3*H*)one (3g)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm): 12.35 (s, 1H, NH), 9.76 (s, 1H, OH), 8.12 (d, J=8.1Hz, 1H, Ar-H), 7.68-7.83 (m, 4H, Ar-H), 7.46 (t, J=7.8Hz, 1H, Ar-H), 6.92 (s, 1H, Ar-H), 3.90 (s, 3H, OCH₃).

¹³C NMR (75 MHz, DMSO-d₆) δ(ppm): 162.84, 152.49, 150.42, 149.48, 147.95, 134.98, 127.69,

126.40, 126.28, 123.86, 121.96, 121.05, 115.89, 111.80, 56.25.

2-(4-methoxyphenyl)quinazolin-4(3H)-one (3h)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm): 12.42 (s, 1H, NH), 812-8.20 (m, 3H, Ar-H), 7.82 (t, J=7.5Hz, 1H, Ar-H), 7.72 (d, J=7.8Hz, 1H, Ar-H), 7.47 (t, J=7.2Hz, 1H, Ar-H), 7.11 (d, J=7.8Hz, 2H, Ar-H), 3.83 (s, 3H, OCH₃).

 ^{13}C NMR (75 MHz, DMSO-d₆) $\delta(\text{ppm})$: 162.37, 161.93, 152.40, 148.95, 135.01, 129.32, 127.11, 126.72, 126.43, 125.3, 121.32, 113.85, 55.52.

2-(4-bromophenyl) quinazolin-4(3H)-one (3i)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm): 12.59 (s, 1H, NH), 8.10-8.17 (m, 3H, Ar-H), 7.81 (t, J=7.6Hz, 1H, Ar-H), 7.70 (d, J=8.1Hz, 1H, Ar-H), 7.60 (d, J=8.1Hz, 2H, Ar-H), 7.51 (t, J=7.8Hz, 1H, Ar-H).

¹³C NMR (75 MHz, DMSO-d₆) δ(ppm): 162.54, 151.89, 149.10, 135.27, 132.53, 132.15, 130.28, 128.01, 127.35, 126.50, 125.71, 121.49.

2-(4-hydroxyphenyl)quinazolin-4(3H)-one (3j)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm): 12.32 (s, 1H, NH); 10.09 (s, 1H, OH), 8.08-8.12 (m, 3H, H-Ar), 7.75-7.84 (m, 1H, H-Ar), 7.68 (d, J=8Hz, 1H, H-Ar), 7.45 (t, J=7.5Hz, 1H, H-Ar), 6.86 (d, J=7.8.1Hz, 2H, H-Ar).

¹³C NMR (75 MHz, DMSO-d₆) δ(ppm): 163.25, 161.01, 149.10, 134.56, 129.47, 127.12, 125.95, 125.91, 123.17, 115.32.

2-(3,4-dimethoxyphenyl)quinazolin-4(3*H*)-one (3k)

¹H NMR (300 MHz, DMSO-d₆) δ(ppm) : 12.43 (s, 1H, NH), 8.12 (d, J=8.1Hz, 1H, H-Ar), 7.80-7.84 (m, 2H, H-Ar), 7.68 (d, J=8Hz, 1H, H-Ar), 7.51(d, J=8.1Hz, 1H, H-Ar), 7.43 (d, J=7.8Hz, 1H, H-Ar), 7.14-7.10 (d, J=8Hz, 1H, H-Ar), 3.85 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃).

¹³C NMR (75 MHz, DMSO-d₆) δ(ppm):163.13, 152.27, 151.32, 149.76, 149.48, 134.93, 127.90, 126.52, 126.38, 125.31, 120.30, 111.09, 110.24, 62.15, 57.32.

3. Result and Discussion

3.1. Characterization of TiP₂O₇

The powder X-ray diffraction (XRD) shows the absence of secondary peaks, which confirms the formation of a single phase of TiP₂O₇ (Figure 2). The diffraction peaks at 19.47°, 22.39°, 25.16°, 27.89°, 32.20°, 38.57°, 42.20°, 48.80°, 52.12°, 58.23° and 62.38° belonged respectively to the crystalline plane (511), (600), (630), (721), (660), (933), (960), (12 3 0), (12 6 0), (14 4 2) and (11 11 1). All the positions of the prepared support's XRD peaks shown a good agreement with those reported in the literature ^{43,51-54}. All reflections can be indexed in the cubic system using the Pa-3 (205) space group, with crystalline parameters a = b = c = 23.6341 Å (JCPDS No. 38-1468). The Debye–Scherer equation determined the average particle crystallite size (D):

$$D = \frac{0.9\lambda}{\beta cos\theta}$$

0 0 1

Where, λ is the X-ray incident wavelength (CuK α = 0.154178 nm), β -full width at half maximum (FWHM) of the diffraction line and θ is the diffraction angle. The average crystalline size of TiP₂O₇ was found to be equal to 32.15 nm.

Assuming that the particles are spherical, the specific surface area was calculated by using the Sauter formula:

$$S = \frac{6 \times 10^3}{0 \times D}$$

Where S is the specific surface area in m^2 .g⁻¹, ρ is the density of synthesized material (TiP₂O₇) in g.cm⁻³, and D is the particle diameter in nm. The density of TiP₂O₇ is 3.052 g/cm^{3 55}, and the average crystallite size is 32.15 nm. Thus, the calculated value of S was found to be 61.14 m²/g.

Figure 2. XRD analysis of TiP₂O₇

The morphology of TiP_2O_7 was studied by scanning electron microscopy (SEM) (Figure 3). The SEM images show that the TiP_2O_7 consists of a set irregular

spherical particle shape with an average diameter of 32 nm. The obtained value indicates a good agreement with that calculated from XRD.

Figure 3. SEM and size histograms images of TiP₂O₇

To determine the elements present in the prepared sample, the analysis of its surface was carried out by

the spectrum of energy dispersion (EDX) (Figure 4).

Figure 4. EDX analysis of the chemical elements constituent TiP₂O₇

The energy dispersive X-ray analysis (EDX) of TiP_2O_7 shows the presence of the elements constituent TiP_2O_7 , such as phosphorus, oxygen, and titanium. The comparison of the percentage of the element obtained by EDX analysis with this reported in the literature shows a good agreement ⁵⁶.

The TiP_2O_7 characterization was completed by the infrared spectroscopy analysis (Figure 5). The peaks located towards 3477.80, 3414.99, and 1632.33 cm⁻¹

are attributed to the vibration characteristics of O-H group due to the presence of the water molecule adsorbed on the surface of TiP₂O₇. The maximum of the broad peak between 1000 and 1200 cm⁻¹ assigned to P-O vibrations. A band at 622.5 cm⁻¹ corresponds to the vibration O–P–O. While, two characteristics bands of the bridging P-O-P are assigned at 954.68 and 732.92 cm⁻¹, and the bands located at 567.31 and 504.49 cm⁻¹ are associated with the vibration of O-Ti-O ⁵⁶⁻⁶⁰.

Figure 5. Infrared spectrum of TiP₂O₇

3.2. Evaluation of MAP, DAP, TSP, and TiP₂O₇ catalytic activity in the quinazolin-4(3H)-ones synthesis

The determination of TiP_2O_7 , MAP, DAP, and TSP catalytic efficiency was the principal objective of this

work. For this, they were applied as a heterogeneous catalyst in the quinazolin-4(3H)-one synthesis. The condensation of anthranilamide and 4-chloro benzaldehyde was chosen as a model reaction (Scheme 1) (Table 1).

Scheme 1. Synthesis of quinazolin-4(3H)-one catalyzed by MAP, DAP, TSP or TiP₂O₇

Table 1. Yields and reaction times obtained without catalyst and in the presence of MAP, DAP, TSP and TiP_2O_7 catalysts in case of the quinazolin-4(3H)-ones ^a synthesis.

Entry	Catalyst	Time (min)	Amount of product (g)	Yield (%) ^b
1	-	600	trace	trace
2	TiP ₂ O ₇	30	0.216	84
3	MAP	90	0.219	85
4	DAP	80	0.214	83
5	TSP	60	0.229	89

^a Reaction conditions: anthranilamide (1 mmol), 4-chlorobenzaldehyde (1 mmol), DMF (3 mL), 10 mg mass of catalyst. ^b Isolated yields

From the results reported in Table 1, it can be noticed that the use of phosphate supports as catalysts decrease the reaction time and increase the product yield. Therefore, their application contributes to the development of green chemistry. The results obtained by TiP2O7, compared to those obtained by the MAP, DAP, and TSP, clearly show an appreciable time-saving. Indeed, after only 30 minutes, the yield of the desired product in the presence of TiP_2O_7 reaches 84%.

The optimal conditions of quinazolin-4(3H)-ones synthesis in the presence of the four catalysts (MAP, DAP, TSP, and TiP2O7) was determined. The effect of the solvent nature, its volume, and the catalyst amount were also examined. The effect of solvent nature was the first studied parameter. For this, the model reaction was carried out in the presence of different solvents such as polar aprotic (DMF, DMSO, EtOAc) and apolar solvents (dioxane, toluene). The obtained results are grouped in Table 2.

Entry	Catalyst	Solvent	Time (min)	Amount of product (g)	Yield (%) ^b
1	MAP	DMF	90	0.219	85
2	DAP	DMF	80	0.214	83
3	TSP	DMF	60	0.229	89
4	TiP ₂ O ₇	DMF	30	0.216	84
5	MAP	DMSO	90	0.213	83
6	DAP	DMSO	80	0.206	80
7	TSP	DMSO	60	0.224	87
8	TiP ₂ O ₇	DMSO	30	0.211	82
9	MAP	Toluene	90	0.180	70
10	DAP	Toluene	80	0.175	68
11	TSP	Toluene	60	0.186	72
12	TiP ₂ O ₇	Toluene	30	0.191	74
13	MAP	Dioxane	90	0.170	66
14	DAP	Dioxane	80	0.157	61

Table 2. Solvent effect of quinazolin-4(3H)-ones ^a synthesis.

15	TSP	Dioxane	60	0.173	67
16	TiP ₂ O ₇	Dioxane	30	0.182	70
17	MAP	EtOAc	90	0.198	77
18	DAP	EtOAc	80	0.187	72
19	TSP	EtOAc	60	0.193	75
20	TiP ₂ O ₇	EtOAc	30	0.202	78

^a Reaction conditions: anthranilamide (1 mmol), 4-chlorobenzaldehyde (1 mmol), solvent (3 mL), 10 mg mass of catalyst. ^b Isolated yields

The experimental results indicate that the best yields are obtained with DMF as a solvent. Indeed, the yields of the desired product (**3a**) achieve 85, 83, 89, and 84% respectively for MAP, DAP, TSP, and TiP₂O₇. The reaction in DMSO and EtOAc led to the product (**3a**) with average yields, and in the case of dioxane and toluene, modest yields are observed.

One can deduce that the DMF is the appropriate solvent for quinazolin-4(3H)-ones synthesis. Therefore, it was chosen as a solvent of the studied reaction in the following part of this present work.

In the concept of green chemistry-based on minimizing the use of solvent, the reaction has been carried out in different volumes of DMF to study its influence on reaction time and product yield.

Entur	Volume	Time (min) / Amount of product (g) / Yield (%) ^b				
Entry		MAP	DAP	TSP	TiP ₂ O ₇	
1	1mL	90 / 0.231 / 89	80 / 0.218 / 84	60 / 0.233 / 90	30 / 0.225 / 87	
2	2mL	90 / 0.227 / 88	80 / 0.215 / 83	60 / 0.231 / 90	30 / 0.220 / 85	
3	3mL	90 / 0.219 / 85	80 / 0.214 / 83	60 / 0.229 / 89	30 / 0.217 / 84	
4	4mL	90 / 0.205 / 80	80 / 0.199 / 77	60 / 0.213 /83	30 / 0.208 / 81	
5	5mL	90 / 0.191 /74	80 / 0.190 / 73	60 / 0.201 / 78	30 / 0.196 / 76	

Table 3. Solvent volume influence on the quinazolin-4(3H)-ones ^a synthesis.

^a Reaction conditions: anthranilamide (1 mmol), 4-chlorobenzaldehyde (1 mmol), DMF (x mL), 10 mg mass of catalyst. ^b Isolated yields

Table 3 shows that the good yields are obtained using 1 mL of DMF. A decrease in the yield of the reaction is observed when the volume increases. This can be explained by the formation of a solvent layer on the catalyst surface, which deactivating the interaction between the reagents and the catalyst. Consequently, the synthesis of quinazolin-4(3H)-ones can be carried

out in 1 mL of DMF, which corresponds perfectly to the principles of green chemistry.

To optimize the amount of each catalyst MAP, DAP, TSP or TiP_2O_7 , the model reaction was realized by varying the mass of catalyst between 1 and 10 mg. The results are regrouped in Table 4.

E 4	Amour	nt of cata	lyst (mg	/mol %)	Time (min) / Amount of product (g) / Yield (%) $^{\rm b}$			
Ешгу	MAP	DAP	TSP	TiP ₂ O ₇	MAP	DAP	TSP	TiP ₂ O ₇
1	1/0.8	1/0.7	1/0.4	1/0.5	90/0.227/88	80/0.232/90	60/0.225/87	30/0.219/85
2	2/1.7	2/1.5	2/0.8	2/0.9	90/0.236/91	80/0.237/92	60/0.229/89	30/0.227/88
3	3/2.6	3/2.3	3/1.2	3/1.3	90/0.239/93	80/0.242/94	60/0.233/90	30/0.232/90
4	4/3.3	4/3.1	4/1.7	4/1.8	90/0.244/95	80/0.241/93	60/0.236/92	30/0.242/94
5	5/3.5	5/3.8	5/2.2	5/2.2	90/0.242/94	80/0.236/91	60/0.239/93	30/0.241/93
6	6/5.2	6/4.6	6/2.6	6/2.7	90/0.240/93	80/0.233/90	60/0.247/96	30/0.236/91
7	7/6.1	7/5.3	7/2.9	7/3.1	90/0.235/91	80/0.227/88	60/0.244/95	30/0.233/90
8	8/6.9	8/6.1	8/3.4	8/3.6	90/0.233/90	80/0.225/87	60/0.240/93	30/0.229/89

Table 4. Catalyst amount optimization for the quinazolin-4(3H)-ones ^a synthesis.

9	9/7.8	9/6.8	9/3.9	9/4.1	90/0.231/89	80/0.220/85	60/0.235/91	30/0.227/88
10	10/8.5	10/7.6	10/4.3	10/4.5	90/0.229/89	80/0.218/84	60/0.233/90	30/0.225/87

^a Reaction conditions: anthranilamide (1 mmol), 4-chlorobenzaldehyde (1 mmol), DMF(1 mL), X mg mass of catalyst. ^b Isolated yields

The results show that the good yields were obtained when 4 mg of MAP or TiP_2O_7 , 3 mg of DAP, and 6 mg of TSP were used. For higher catalyst amounts, it is remarkable that the yield decreases, which can be explained by the dispersion of the reagents at the surface of the catalyst. These results are interesting because it takes into account the green chemistry principals that consist of minimizing the risk accompanied by the use of large quantities of catalyst. One of the most critical points in green chemistry is the ability to reuse catalysts several times without losing its catalytic activity. For this, the reuse capacity of the used catalysts (MAP, DAP, TSP, and TiP₂O₇) was evaluated in the Synthesis of quinazolin-4(3H)ones. Indeed, the model reaction was carried out several times under optimal conditions. The obtained yield was determined after each cycle of reuse. The results are shown in Figure 6.

Figure 6. Recyclability of catalysts MAP, DAP, TSP, and TiP₂O₇

Figure 6 shows that the yields remain unchanged according to the number of the regeneration cycle. Thus, one deduces that there is no loss of catalytic activity even after five uses. The structure of TiP_2O_7 after its reuse was examined by XRD and IR analyzes.

The XRD and IR spectra of the TiP_2O_7 recovered after the five cycles prove that the catalyst structure has not undergone any modification even after five reuses (Figure 7).

Figure 7. XRD analysis (a) and IR (b) for TiP₂O₇ after the last cycle of reuse

In order to examine the heterogeneity of TiP_2O_7 , a hot filtration test has been carried out using anthranilamide and 4-chlorobenzaldehyde under the optimized condition. After half time of the reactions

(Figure 8), the catalyst was separated from the reaction mixture, and the filtrate was allowed to continue the reaction under the same condition.

Figure 8. Heterogeneity test for the condensation of anthranilamide and 4-chlorobenzaldehyde

In half time, 57% of the product has been obtained. When the catalyst has been removed, any increase in the yield has been observed, indicating that Ti was not leached out from the catalyst into the solution. This implies that TiP_2O_7 is a heterogeneous catalyst.

After optimizing the operating conditions of quinazolin-4(3H)-one derivative Synthesis, they were applied for the generalization of the reaction. For this, various substituted aromatic aldehydes were employed (Scheme 2). Table 5 collects the results obtained for each aldehyde derivative.

Scheme 2. Synthesis of some quinazolin-4(3H)-ones

Table 5. Generalization of a	juinazolin-4(3H)-one synthesis.
------------------------------	---------------------------------

Entry	R	Catalysts	Time (min) / Amount of product (g) / Yield (%)	TON	TOF (h ⁻¹)	mp (°C) Found	mp (°C) Reported
		MAP	90 / 0.244 / 95	27.29	18.19		
30	4 C1	DAP	80 / 0.242 / 94	41.22	30.99	> 260	205 207 61
38	4-CI	TSP	60 / 0.247 / 96	37.35	37.35	>200	305-307 01
		TiP ₂ O ₇	30 / 0.242 / 94	51.38	102.76		
	3b 4-NO ₂	MAP	90 / 0.227 / 85	24.42	16.28	>260	363–364 ⁶¹
26		DAP	80 / 0.224 / 88	38.59	29.01		
30		TSP	60 0.229 / 86	33.20	33.20		
		TiP ₂ O ₇	30 / 0.238 / 89	49.17	98.34		
		MAP	90 / 0.189 / 80	22.98	15.32		236-239 ⁶²
2.	4 CH	DAP	80 / 0.193 / 82	35.96	27.04	226 227	
3C	4-CH3	TSP	60 / 0.206 / 87	33.59	33.59	230-237	
		TiP ₂ O ₇	30 / 0.199 / 84	46.40	92.80		
3d	4-N(CH ₃) ₂	MAP	90 / 0.223 / 84	24.13	16.09	241-242	240-242 17

		DAP	80 / 0.239 / 90	39.47	29.67		
		TSP	60 / 0.233 / 88	33.97	33.97		
		TiP ₂ O ₇	30 / 0.236 / 89	49.17	98.34		
		MAP	90 / 0.193 / 87	25.00	16.66		
2.	п	DAP	80 / 0.197 / 89	39.03	29.34	220 240	220 241 62
3e	п	TSP	60 / 0.202 / 91	35.16	35.16	239-240	239-241
		TiP ₂ O ₇	30 / 0.205 / 92	50.82	101.64		
		MAP	90 / 0.215 / 90	25.86	17.24		
26	2.011	DAP	80 / 0.205 / 86	37.71	28.36	. 260	272 274 63
31	2-0H	TSP	60 / 0.211 / 89	34.36	34.36	>260	2/2-2/4 00
		TiP ₂ O ₇	30 / 0.216 / 90	49.72	994.4		
		MAP	90 / 0.225 / 84	24.13	16.08		
3-	4-OH,3-	DAP	80 / 0.220 / 82	35.96	27.03	229	228 240 63
зg	OCH ₃	TSP	60 / 0.234 / 87	33.59	33.59	238	238-240
		TiP ₂ O ₇	30 / 0.228 / 85	46.96	93.92		
	4-OMe	MAP	90 / 0.212 / 84	24.13	16.08	244	243-244 ¹⁸
21		DAP	80 / 0.204 / 81	35.52	26.70		
Sn		TSP	60 / 0.222 / 88	33.97	33.97		
		TiP ₂ O ₇	30 / 0.225 / 89	49.17	98.34		
		MAP	90 / 0.261 / 87	25.00	16.66		
2:	4 D.,	DAP	80 / 0.253 / 84	36.84	27.69	109	107 100 61
- 31	4-Br	TSP	60 / 0.271 / 90	34.74	34.74	198	197–199 **
		TiP ₂ O ₇	30 / 0.280 / 93	51.38	102.76		
		MAP	90 / 0.198 / 83	23.85	15.90		
2:	4 011	DAP	80 / 0.195 / 82	35.96	27.04	> 260	> 200 17
J	4-0H	TSP	60 / 0.212 / 89	34.36	34.36	>200	>300 **
		TiP ₂ O ₇	30 / 0.207 / 87	48.06	96.13		
		MAP	90 / 0.218 / 77	22.12	14.75		
21.	2 4 OMa	DAP	80 / 0.226 / 80	35.08	26.38	710	246 249 64
ЭК	3,4-UME	TSP	60 / 0.240 / 85	32.81	32.81	248	240-248
		TiP ₂ O ₇	30 / 0.252 / 89	49.17	98.28		

The results show that good to excellent yields of products with high values of TON and TOF are obtained by using a variety of aromatic aldehydes possessing different substituents. Indeed, the aromatic aldehydes with electron-donating groups (4-CH₃, 4-N(CH₃)₂, 2-OH, 4,3-OH, CH₃, 4-OCH₃, 3,4-OCH₃) give desired products with good yields (Table 5, entries **3c**, **3d**, **3f**-**3h**, **3j**, **3k**). The obtained yields are between 77 and 90% in reaction times varying between 30 and 90 minutes. When the aromatic aldehyde having an electron-withdrawing group (4-NO₂) is used, the reactions give the product **3b** with high yields (85 to 89%).

For the aldehyde having a halogen functionality (4-Cl, 4-Br), it is shown that reacted smoothly with anthranilamide to provide similar products **3a**, **3i** with excellent yields 84–96%.

These results show that whatever the aromatic aldehyde group, the yield remains excellent (\geq 77 %). Indeed, the catalytic activity of the used catalyst has not been affected by the nature group of aromatic aldehyde. Therefore, it can be deduced that TiP₂O₇ is an efficient catalyst for the quinazolin-4(3H)-ones synthesis.

The role of the titanium phosphate (TiP_2O_7) in the synthesis of quinazolin-4(3H)-one, may be explained by a suggested mechanism involving the condensation

of aromatic aldehyde and anthranilamide in the presence of TiP_2O_7 , which acts as a Lewis acid catalyst (Scheme 3).

Scheme 3. A plausible mechanism for the formation of quinazolin-4(3H)-ones

Le schéma 3 montre que la réaction commence avec l'action de l'anthranilamide et de l'aldéhyde en présence de TiP2O7 pour former l'intermédiaire 2. Ce dernier est activé par TiP2O7 facilitant l'attaque nucléophile intermoléculaire de l'azote sur le carbone imine, coduisant ainsi à l'intermédiaire 4.The latter then undergoes aerobic oxidation catalyzed by TiP2O7 to give the desired product **3a-k**. To improve the experimental results, a comparison study between the catalytic activity of the used catalysts (MAP, DAP, TSP, and TiP_2O_7) and that of other catalysts reported previously for the same synthesis was necessarily developed. Table 6 presents the reaction conditions, the yields, and the reaction time for each catalyst.

Table 6. Comparison between some catalysts described in the literature and the catalysts used.

Entry	Catalyst	Reaction conditions	Time	Yield (%)
1	MAP	DMF/100°C	90 min	95
2	DAP	DMF/100°C	80 min	94
3	TSP	DMF/100°C	60 min	96
4	TiP ₂ O ₇	DMF/100°C	30 min	93
5	Cu_2ZrO_3/H_2O_2	EtOH/reflux	1.5 h	95 ⁶⁴
6	Cp_2ZrCl_2	DMF/100°C	4 h	82 ⁶⁵
7	CuCl ₂	DMSO/120°C	24 h	72 66
8	Fe(NO ₃) ₃ .H ₂ O	DMSO/120°C	24 h	80 66
9	VO(acac) ₂	DCE, air/80°C	6 h	84 ⁶⁷
10	CuCl ₂ .2H ₂ O	EtOH/reflux	16 h	94 ⁶⁸
11	K ₄ Fe(CN) ₆	CH ₃ CN/70°C	9 h	35 18
12	Na ₂ MoO ₄ .2H ₂ O	CH ₃ CN/70°C	9 h	25 18

The obtained results show that the MAP, DAP, TSP, and TiP_2O_7 are more efficient than other catalysts presented in Table 6. Indeed, their application led to obtaining a higher yield of products in short reaction time. While Cu₂ZrO₃/H₂O₂, CuCl₂, Cp₂ZrCl₂,

4. Conclusion

To sum-up, an efficient and green method was developed for quinazolin-4(3H)-one derivatives synthesis, through the condensation of anthranilamide with 4-chlorobenzaldehyde using MAP, DAP, TSP, and TiP₂O₇ as heterogeneous catalysts. The products were obtained with excellent yields in short reaction time, which shows that these four catalysts have unusual catalytic activity. Also, these catalysts were reused at least five times without any loss of their efficiency. According to the comparison between the prepared titanium phosphate and the three phosphate fertilizers MAP, DAP, and TSP, TiP2O7 was considered as the most efficient catalyst for quinazolin-4(3H)-one derivatives synthesis. Indeed, the modification by TiCl₄ has improved the catalytic activity of the three phosphate fertilizers. Therefore, TiP₂O₇ can be considered as an efficient catalyst for other organic syntheses, and its application can contribute to green chemistry development.

 $K_4Fe(CN)_6$, $Fe(NO_3)_3.H_2O$, $VO(acac)_2$, Na_2MoO_4 . 2 H_2O and $CuCl_2.2H_2O$ gives lower yields in long reaction times. Besides, some of these catalysts are non-recyclable, which presents a real environmental problem

References

- M.A. Sabry, A.H. Ewida, S.G. Hassan, A.M. Ghaly, I.H. El-Subbagh, Synthesis, Antitumor Testing and Molecular Modeling Study of Some New 6-Substituted Amido, Azo or Thioureido-Quinazolin-4(3H)-Ones, Bioorganic Chemistry, 2019, 88, 102923.
- 2- S. Gatadi, T.V. Lakshmi, S. Nanduri, 4(3H)-Quinazolinone Derivatives: Promising Antibacterial Drug Leads, European Journal of Medicinal Chemistry, 2019, 170, 157-172.
- 3- R.M. Chang, A.G. Zeng, W. Du, X.Y. Xu, S.J. Zuo, C. Chang, Q. Fu, An HPLC Method for the Determination of a Novel Anti-Hypertension Agent 6,7-Dimethoxy-3-[4-(4-Fluorobenzyloxy)-3-Methoxyphenylmethyl]Quinazolin-4(3*H*)-one in Rat Plasma: Application to Pharmacokinetic Study: An HPLC Method for the Determination of Compound DFMQ-19, Biomed. Chromatogr., 2016, 30 (7), 1118-1123.
- 4- M. S. Raghu, C.B.P. Kumar, K.Y. Kumar, M.K. Prashanth, B.K. Jayanna, Synthesis, Characterization, and Biological Evaluation of Novel 3-(4-Chlorophenyl)-2- (Substituted)Quinazolin-4(3H)-One Derivatives as Multi-Target Anti-Inflammatory Agents, J. Heterocyclic Chem., 2019, 56 (7), 2046-2051.

- 5- Z. Hajimahdi, R. Zabihollahi, M.R. Aghasadeghi, A. Zarghi, Design, Synthesis, Docking Studies and Biological Activities Novel 2,3- Diaryl-4-Quinazolinone Derivatives as Anti-HIV-1 Agents, C.H.R., 2019, 17 (3), 214–222.
- 6- H. Ighachane, M.H. Sedra, H.B. Lazrek, Synthesis, and Evaluation of Antifungal Activities of (3H)-Quinazolin-4-One Derivatives against Tree Plant Fungi, J. Mater. Environ. Sci., 2017, 8 (1), 134-143.
- 7- C.A. Mosley, T.M. Acker, K.B. Hansen, P. Mullasseril, K.T. Andersen, P. Le, K.M. Vellano, H. Bräuner-Osborne, D.C. Liotta, S.F. Traynelis, Quinazolin-4-One Derivatives: A Novel Class of Noncompetitive NR2C/D Subunit-Selective N -Methyl- D -Aspartate Receptor Antagonists, J. Med. Chem., 2010, 53 (15), 5476-5490.
- 8- P.M. Chandrika, A.R.R. Rao, B. Narsaiah, M.B. Raju, Quinazoline derivatives with potent anti-inflammatory and anti-allergic activities, Int. J. Chem. Sci., 2008, 6 (3), 1119-1146.
- 9- W. Guo, L.Y. Zheng, Y.D. Li, R.M. Wu, Q. Chen, D.Q. Yang, X.L. Fan, Discovery of Molluscicidal and Cercaricidal Activities of 3-Substituted Quinazolinone Derivatives by a Scaffold Hopping Approach Using a Pseudo-Ring Based on the Intramolecular Hydrogen Bond Formation, European Journal of Medicinal Chemistry, **2016**, 115, 291-294.
- 10-R. O. Dempcy, E.B. Skibo, Rational Design of Quinazoline-Based Irreversible Inhibitors of Human Erythrocyte Purine Nucleoside Phosphorylase, Biochemistry, **1991**, 30 (34), 8480-8487.
- 11-J.F. Liu, Rapid Syntheses of Biologically Active Quinazolinone Natural Products Using Microwave Technology, C. O. S., 2007, 4 (2), 223-237.
- 12-S.K. Ghosh, R. Nagarajan, Total Synthesis of Penipanoid C, 2-(4-Hydroxybenzyl)Quinazolin-4(3H)-One and NU1025, Tetrahedron Letters, 2016, 57 (38), 4277-4279.
- 13-T. McC Paterson, R.K. Smalley, H. Suschitzky, 1,2,3-Benzotriazin-4-Ones, and Related Systems. Part III¹. Thermal Decomposition of 3-Arylideneamino-1,2,3-Benzotriazin-4-Ones. A New Synthesis of 2-Arylquinazolin-4-Ones, Synthesis, **1975**, 1975 (03), 187-189.
- 14-M. Nikpassand, L. Zare Fekri, K. F. Sina, S. Z. Abed, O. Marvi, 3,3'-(butane-1,4-diyl)bis (1,2-dimethyl-1H-imidazol-3-ium) dibromide [BDBIm] Br-An efficient reusable ionic liquid for the microwave-assisted Synthesis of quinazolinones, Russ J Gen Chem., 2015, 85 (8), 1959–1964.
- 15-J. X. Chen, H.Y. Wu, W.K. Su, A Facile Synthesis of 2,3-Dihydro-2-Aryl-4(1H)-Quinazolinones Catalyzed by Scandium(III) Triflate, Chinese Chemical Letters, 2007, 18 (5), 536-538.

- 16-D. Shi, L. Rong, J. Wang, Q. Zhuang, X. Wang, H. Hu, Synthesis of Quinazolin-4(3 H)-Ones and 1,2-Dihydroquinazolin-4(3H)-Ones with the Aid of a Low-Valent Titanium Reagent., Tetrahedron Letters, **2003**, 44 (15), 3199-3201.
- 17-G.W. Wang, C.B. Miao, H. Kang, Benign and Efficient Synthesis of 2-Substituted 4(3H)-Quinazolinones Mediated by Iron(III) Chloride Hexahydrate in Refluxing Water, BCSJ., 2006, 79 (9), 1426-1430.
- 18-A. Nasreen, R.M. Borik, Cobalt(II) Chloride Catalyzed One-Pot Synthesis of 2-Substituted and 3-Substituted-4(3H)-Quinazolinones, Orient. J. Chem., **2014**, 30 (2), 761-768.
- 19-R.J. Abdel-Jalil, W. Voelter, M. Saeed, A Novel Method for the Synthesis of 4(3H)-Quinazolinones, Tetrahedron Letters, 2004, 45 (17), 3475-3476.
- 20-R. Cheng, T. Guo, D. Zhang-Negrerie, Y. Du, K. Zhao, One-Pot Synthesis of Quinazolinones from Anthranilamides and Aldehydes via p-Toluenesulfonic Acid-Catalyzed Cyclocondensation and Phenyliodine Diacetate Mediated Oxidative Dehydrogenation, Synthesis, 2013, 45 (21), 2998-3006.
- 21-H. Kang, W. Wang, Q. Sun, S. Yang, J. Jin, X. Zhang, X. Ren, J. Zhang, J. Zhou, Microwave-Assisted Synthesis of Quinazolin-4(3H)-ones Catalyzed by SbCl₃, Heterocyclic Communications, **2018**, 24 (6), 293-296.
- 22-Y.H.Vo, T.V. Le, H.D. Nguyen, T.A. To, H. Q. Ha, T.A. Nguyen, A.N.Q. Phan, N.T.S. Phan, Synthesis of Quinazolinones and Benzazoles Utilizing Recyclable Sulfated Metal-Organic Framework-808 Catalyst in Glycerol as Green Solvent, Journal of Industrial and Engineering Chemistry, **2018**, 64, 107-115.
- 23-Z. Li, J. Dong, X. Chen, Q. Li, Y. Zhou, S.F. Yin, Metal- and Oxidant-Free Synthesis of Quinazolinones from β -Ketoesters with *o* -Aminobenzamides via Phosphorous Acid-Catalyzed Cyclocondensation and Selective C–C Bond Cleavage, J. Org. Chem., **2015**, 80 (19), 9392-9400.
- 24-G. Shen, H. Zhou, Y. Sui, Q. Liu, K. Zou, FeCl₃-Catalyzed Tandem Condensation/Intramolecular Nucleophilic Addition/C–C Bond Cleavage: A Concise Synthesis of 2-Substitued Quinazolinones from 2-Aminobenzamides and 1,3-Diketones in Aqueous Media, Tetrahedron Letters, 2016, 57 (5), 587-590.
- 25-M.H. Sayahi, S. Bahadorikhalili, S.J. Saghanezhad, M. Mahdavi, Copper (II)-Supported Polyethylenimine-Functionalized Magnetic Graphene Oxide as a Catalyst for the Green Synthesis of 2-Arylquinazolin-4(3H)-ones, Res Chem Intermed., **2018**, 44 (9), 5241-5253.
- 26-Z.L. Ren, H.H. Kong, W. T. Lu, M. Sun, M.W. Ding, One-Pot Synthesis of Quinazolin-4(3H)ones and Fused Quinazolinones by a Palladium-

Catalyzed Domino Process, Tetrahedron, **2018**, 74 (1), 184-193.

- 27-Y. Merroun, S. Chehab, T. Ghailane, M. Akhazzane, A. Souizi, R. Ghailane, Preparation of Tin-Modified Mono-Ammonium Phosphate Fertilizer and Its Application as Heterogeneous Catalyst in the Benzimidazoles and Benzothiazoles Synthesis, Reac Kinet Mech Cat., 2019, 126 (1), 249-264.
- 28-S.Chehab, Y. Merroun, T. Ghailane, R. Ghailane, S. Boukhris, M. Akhazzane, A. Kerbal,
 A. Souizi, Synthesis of 9-Arylhexahydroacridine-1,8-Diones Using Phosphate Fertilizers as Heterogeneous Catalysts, Russ J Org Chem., 2019, 55 (9), 1380-1386.
- 29-A. El Hallaoui, S. Chehab, B. Malek, O. Zimou, T. Ghailane, S. Boukhris, A. Souizi, R. Ghailane, Valorization of the Modified Mono Ammonium Phosphate by Cobalt in the Synthesise of 3,4-Dihydropyrano[c]Chromene Derivatives, ChemistrySelect., **2019**, 4 (11), 3062–3070.
- 30-A. E. Hallaoui, S. Chehab, T. Ghailane,
 B. Malek, O. Zimou, S. Boukhriss, A. Souizi,
 R. Ghailane, Application of Phosphate Fertilizer Modified by Zinc as a Reusable Efficient Heterogeneous Catalyst for the Synthesis of Biscoumarins and Dihydropyrano
 [3,2-c] Chromene-3-Carbonitriles under Green Conditions, *Polycyclic Aromatic Compounds*, 2020, 1–20.
- 31-I. Bahammou, B. Malek, T. Ghailane,
 R. Ghailane, S. Boukhris, A. Souizi, A Green and Efficient Process for the Synthesis of Benzothiazinones Using Phosphate Fertilizers MAP, DAP, and TSP as Heterogeneous Catalysts, Journal of the Turkish Chemical Society Section A: *Chemistry*, **2019**, 6 (3), 349–354.
- 32-O. Zimou, B. Malek, A. Elhallaoui, T. Ghailane, R. Ghailane, S. Boukhris, N. Habbadi,
 A. Hassikou, A. Souizi, Valorization of the Phosphate Fertilizers Catalytic Activity in 1-(Benzothiazolylamino) Methyl-2-Naphthol Derivatives Synthesis, Bull. Chem. React. Eng. Catal., 2019, 14 (2), 238.
- 33-S. Sibous, S. Boukhris, R. Ghailane, N. Habbadi, A. Hassikou, A. Souizi, Easy Synthesis of 3,4-dihydropyrimidin -2-(1H)-ones using phosphate fertilizers MAP, DAP, and TSP as efficient catalysts, Journal of the Turkish Chemical Society, Section A: Chemistry, **2017**, 4 (2), 1-12.
- 34-Y. Merroun, S. Chehab, T. Ghailane,
 S. Boukhris, R. Ghailane, N. Habbadi,
 A. Hassikou, B. Lakhrissi, A. Souizi, An Effective Method to Synthesize
 2,3-Dihydroquinazolin-4(1H)-One Using Phosphate Fertilizers (MAP, DAP, and TSP) as Green Heterogeneous Catalysts, Journal of the Turkish Chemical Society, Section A: Chemistry,
 2018, 5 (1), 303-316.

- 35-S. Sibous, T. Ghailane, S. Houda, R. Ghailane, S. Boukhris, A. Souizi, Green, and Efficient Method for the Synthesis of 1,5-Benzodiazipines Using Phosphate Fertilizers as Catalysts under Free Solvent, Mediterr.J.Chem., 2017, 6 (2), 53-59.
- 36-Z. Benzekri, H. Serrar, A. Zarguil, S. Boukhris, A. Souizi, Snail Shell as a Natural and Highly Efficient Catalyst for the Synthesis of Imidazole Derivatives. 2018, 8 (1), 1-7.
- 37-I. Bahammou, A. Esaady, S. Boukhris, R. Ghailane, N. Habbadi, A. Hassikou, A. Souizi, Direct use of mineral fertilizers MAP, DAP, and TSP as heterogeneous catalysts in organic reactions, Mediterr J Chem., 2016, 5 (6), 615-623.
- 38-S. Chehab, Y. Merroun, T. Ghailane, N. Habbadi, S. Boukhris, A. Hassikou, R. Ghailane, M. Akhazzane, A. Kerbal, A. Daich, A. Souizi, A New Process for Na₂Ca(HPO₄)₂ Synthesis and Its Application as a Heterogeneous Catalyst in Knoevenagel Condensation, Mediterr.J.Chem., 2018, 7 (1), 39-55.
- 39-S. Chehab, Y. Merroun, T. Ghailane,
 R. Ghailane, S. Boukhris, A. Souizi, A Green and Efficient Method for The Synthesis of
 3,4-Dihydropyrano[c]Chromene Using Phosphate Fertilizers (MAP, DAP, and TSP) as Heterogeneous Catalysts, Journal of the Turkish Chemical Society, Section A: Chemistry, **2018**, 5 (2), 355–370.
- 40-Y. Wen, L. Chen, Y. Pang, Z. Guo, D. Bin, Y. Wang, C. Wang, Y. Xia, TiP₂O₇, and Expanded Graphite Nanocomposite as Anode Material for Aqueous Lithium-Ion Batteries, ACS Appl Mater Interfaces, **2017**, 9 (9), 8075-8082.
- 41-A. Lapina, C. Chatzichristodoulou, J. Hallinder, P. Holtappels, M. Mogensen, Electrical conductivity of titanium pyrophosphate between 100 and 400 °C: effect of sintering temperature and phosphorus content, J Solid State Electrochem., **2014**, 18, 39-47.
- 42-N. Kitamura, Protonic conduction in rare-earth orthophosphates with the monazite structure, Solid State Ionics, **2003**, 162–163, 161–165.
- 43-W. Wu, S. Shanbhag, A. Wise, J. Chang, A. Rutt, J. F. Whitacre, High-Performance TiP₂O₇Based Intercalation Negative Electrode for Aqueous Lithium-Ion Batteries via a Facile Synthetic Route, J Electrochem Soc., **2015**, 162 (9), A1921–A1926.
- 44-M. Xi, L. Wu, J. Li, X. Li, Hierarchical flowerlike titanium phosphate derived from H-titanate nanotubes for photocatalysis, J Mater Sci., 2015, 50, 7293–7302.
- 45-A. Muto, K. Ida, T. Bhaskar, Md. A. Uddin, S. Takashima, T. Hirai, Y. Sakata, Preparation of novel TiP₂O₇ carbon composite using ionexchanged resin (C467) and evaluation for photocatalytic decomposition of 2-propanol,

Applied Catalysis A: General, **2004**, 260 (2), 163–168.

- 46-X. Meng, M. Hao, J. Shi, Z. Cao, W. He, Y. Gao, J. Liu, Z. Li, Novel visible light response Ag₃ PO₄ /TiP₂O₇ composite photocatalyst with low Ag consumption, Advanced Powder Technology, 2017, 28 (3), 1047-1053.
- 47-Y. Wang, X. Meng, G. Chen, P. Zhao, Direct Synthesis of quinazolinones by heterogeneous Cu(OH)_X /OMS-2 catalyst under oxygen, Catalysis Communications, **2018**, 104, 106–111.
- 48-S. Rostamizadeh, M. Nojavan, R. Aryan, E. Isapoor, M. Azad, Amino acid-based ionic liquid immobilized on α-Fe₂O₃-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives, Journal of Molecular Catalysis A: Chemical, **2013**, 374–375, 102–110.
- 49-T. Li, M. Chen, L. Yang, Z. Xiong, Y. Wang, F. Li, D. Chen, Copper-catalyzed consecutive reaction to construct quinazolin-4(3H)-ones and pyrido[2,3-d] pyrimidin-4(3H)-ones, Tetrahedron, **2016**, 72, 868–874.
- 50-Y. H. Shang, L.-Y. Fan, X.-X. Li, M.-X. Liu, Y(OTf)₃ -catalyzed heterocyclic formation via aerobic oxygenation: An approach to dihydro quinazolinones and quinazolinones, Chinese Chemical Letters, **2015**, 26, 1355–1358.
- 51-A.K. Rai, J. Gim, J. Song, V. Mathew, L.T. Anh, J. Kim, Electrochemical and Safety Characteristics of TiP₂O₇-Graphene Nanocomposite Anode for Rechargeable Lithium-Ion Batteries, Electrochimica Acta, 2012, 75, 247–253.
- 52-Y. Hao, C. Wu, Y. Cui, K. Xu, Z. Yuan, Q. Zhuang, Preparation and Electrochemical Performances of Submicro-TiP₂O₇ Cathode for Lithium-Ion Batteries, Ionics, **2014**, 20 (8), 1079-1085.
- 53-G. Yee, S. Shanbhag, W. Wu, K. Carlisle, J. Chang, J.F. Whitacre, TiP₂O₇ Exhibiting Reversible Interaction with Sodium Ions in Aqueous Electrolytes, Electrochemistry Communications, **2018**, 86, 104-107.
- 54-C. Li, X. Sun, Q. Du, H. Zhang, Carbon-Coated TiP2O7 with Improved Cyclability in Aqueous Electrolytes, Solid State Ionics, **2013**, 249–250, 72–77.
- 55-V. Venckutė, P. Dobrovolskis, T. Šalkus, A. Kežionis, A. Dindune, Z. Kanepe, J. Ronis, K.Z. Fung, A.F. Orliukas, Preparation and Characterization of Solid Electrolytes Based on TiP₂O₇ Pyrophosphate, Ferroelectrics, **2015**, 479 (1), 101-109.
- 56-Y.N. Vaidyanath, K.G. Ashamanjari, K.R. Vishnu Mahesh, M. Mylarappa, M.S. Bhargava Ramu, S. C. Prashantha, H.P. Nagaswarupa, N. Raghavendra, D.M.K. Siddeswara, Development and characterization of titanium phosphates (TiP₂O₇) and lithium titanium phosphate (LiTiP₂O₇) and their thermal and

electric properties, Int J Adv Res., **2017**, 5 (7), 917-925.

- 57-Y. Sun, L. Gai, Y. Zhou, X. Zuo, J. Zhou, H. Jiang, Polyhierarchically Structured TiP₂O₇/C Microparticles with Enhanced Electrochemical Performance for Lithium-Ion Batteries, CrystEngComm., **2014**, 16 (46), 10681-10691.
- 58-C.C. Ribeiro, C.C. Barrias, M. A. Barbosa, Preparation and Characterisation of Calcium-Phosphate Porous Microspheres with a Uniform Size for Biomedical Applications, J Mater Sci: Mater Med, **2006**, 17 (5), 455-463.
- 59-I. C. Marcu, I. Sandulescu, J.M.M. Millet, Effects of the Method of Preparing Titanium Pyrophosphate Catalyst on the Structure and Catalytic Activity in Oxidative Dehydrogenation of N-Butane, Journal of Molecular Catalysis A: Chemical, **2003**, 203 (1–2), 241–250.
- 60-A. Salhi, A. Aarfane, S. Tahiri, L. Khamliche, M. Bensitel, S. Rafqah, N. Benzidia, M. El Krati, Préparation et évaluation de l'efficacité photocatalytique du Hydroxyapatite - Titane visà-vis du colorant Acide Orange 7 en milieu aqueux (Preparation and photocatalytic efficiency evaluation of Hydroxyapatite - Titanium toward Orange Acid 7 dye in aqueous medium), J Mater Environ Sci., **2014**, 5 (5), 1573-1582.
- 61-A. Davoodnia, S. Allameh, A.R. Fakhari, N. Tavakoli-Hoseini, Highly Efficient Solvent-Free Synthesis of Quinazolin-4(3H)-ones and 2,3-Dihydroquinazolin-4(1H)-Ones Using Tetrabutylammonium Bromide as Novel Ionic Liquid Catalyst, Chinese Chemical Letters, 2010, 21 (5), 550–553.
- 62-Z. Wang, Y. Tang, Mechanistic Insights into a Catalyst-Free Method to Construct Quinazolinones through Multiple Oxidative Cyclization, Tetrahedron, **2016**, 72 (10), 1330–1336.

- 63-J. Zhang, D. Ren, Y. Ma, W. Wang, H. Wu, CuO Nanoparticles Catalyzed Simple and Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Quinazolin-4(3H)-ones under Ultrasound Irradiation in Aqueous Ethanol, Tetrahedron, 2014, 70 (34), 5274–5282.
- 64-L. Parashuram, S. Sreenivasa, S. Akshatha, V.U. Kumar, S. Kumar, Zirconia-Supported Cu(I)-Stabilized Copper Oxide Mesoporous Catalyst for the Synthesis of Quinazolinones Under Ambient Conditions, Asian J Org Chem., 2017, 6,1755–1759.
- 65-J. Jadhav, S. Khanapure, R. Salunkhe,
 G. Rashinkar, Cp₂ZrCl₂-catalyzed Synthesis of 2-substituted Quinozolin-4(3H)-ones, Appl. Organometal. Chem., **2013**, *27* (8), 486–488.
- 66-D. Zhan, T. Li, X. Zhang, C. Dai, H. Wei, Y. Zhang, Q. Zeng, Vanadium-Catalyzed Synthesis of 4(3H)-Quinazolinones from Anthranilamides and Aryl Aldehydes, Synthetic Communications, **2013**, 43 (18), 2493-2500.
- 67-Z. Bie, G. Li, L. Wang, Y. Lv, J. Niu, S. Gao, A Facile Vanadium-Catalyzed Aerobic Oxidative Synthesis of Quinazolinones from 2-Aminobenzamides with Aldehydes or Alcohols, Tetrahedron Letters, **2016**, 57 (44), 4935-4938.
- 68-K.M. Khan, S.M. Saad, N. N. Shaikh, S. Hussain, M.I. Fakhri, S. Perveen, M. Taha, M.I. Choudhary, Synthesis and β-Glucuronidase Inhibitory Activity of 2-Arylquinazolin-4(3H)ones, Bioorganic & Medicinal Chemistry, **2014**, 22 (13), 3449–3454.