Chemical preparation, thermal behavior and infrared studies of the new cyclotriphosphate tetrahydrate of manganese and distronium, MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O

Smail El Makhloufy 1,2, Malika Tridane 1,2, El Mehdi Majdi 1, Hamza Marouani 1, Souffiane Zerraaf 1,2, Mustafa Belhabra 1, Abdelouahed Cherqaoui 1 and Said Belaouad 1

1 Laboratory of Chemistry-Physics of Materials, Faculty of Sciences Ben M’Skik B. P. 7955, Hassan II University of Casablanca, Casablanca, Morocco
2 Regional Center for Education and Training Occupations Casablanca Anfa, Bd Bir Anzarane Casablanca, Morocco

Abstract: A new cyclotriphosphate tetrahydrate of manganese and distronium, MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O, was obtained as a polycrystalline sample by the method of ion-exchange resin. The cyclotriphosphate studied in this work is the second one having the formula MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O after BaZn$_2$(P$_3$O$_9$)$_2$.10H$_2$O. Its crystallographic characterization, infrared studies and thermal behavior are given. The studied phosphate crystallizes in the triclinic system, P-1, with the following unit cell parameters: a = 6,653(1) Å, b = 7,110(1) Å, c = 5,123(1) Å, α = 103,37(2)$^\circ$, β = 95,81(2)$^\circ$, γ = 93,04(2)$^\circ$ and Z = 1. The intermediate products of dehydration of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O are MnSr$_2$(P$_3$O$_9$)$_2$.2H$_2$O, mixture of ([Mn(PO$_4$)$_3$]$_{\infty}$ + 2[Sr(PO$_4$)$_2$]$_{\infty}$) and mixture of ([Mn(PO$_4$)$_3$]$_{\infty}$ + 2[Sr(PO$_4$)$_2$]$_{\infty}$). The thermal behavior of the studied condensed phosphate has been investigated and interpreted by IR absorption and X-ray diffraction experiments. The title compound can be used as catalyst, ion exchanger, the reactant in ionic conditions, intercalation reactions, superphosphate fertilizer and as an inorganic pigment in ceramics.

Keywords: Cyclotriphosphate; thermal behavior; vibration study; thermogravimetric analysis.

1. Introduction

Multivalent metal phosphates have some technologically useful properties. However, this has posed the question of industrial manufacture of several condensed phosphates, which is required in the form of single crystals or polycrystalline samples. Till now, there are only four cyclotriphosphates with the general formula $\text{M}^m\text{P}^{3n}\text{P}_3\text{O}_{9+n}\text{H}_2\text{O}$. These phosphates are Ba$_2$Zn(P$_3$O$_9$)$_2$.10H$_2$O, MnCa$_2$(P$_3$O$_9$)$_2$.10H$_2$O, MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O and MnBa$_2$(P$_3$O$_9$)$_2$.6H$_2$O. The crystalline structure was solved only for Ba$_2$Zn(P$_3$O$_9$)$_2$.10H$_2$O. During a systematic investigation of this series of cyclotriphosphates in our laboratory, we obtained MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O whose structure is unknown till now. The present work describes the chemical preparation, crystallographic characterization, vibrational study and thermal behavior of a new cyclotriphosphate, MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O, by X-ray diffraction, infrared spectrometry, thermal analyses TGA, DTA and DSC.

2. Results and Discussion

2.1. Chemical preparation

Through a column of ion exchange resin (Na$^+$ by H$^+$), “Amberlite IR 120” 3. A concentrated solution of Na$_2$P$_2$O$_7$ is slowly added. The cyclotriphosphoric acid H$_3$P$_2$O$_6$ thus obtained is immediately neutralized with a mixture of stoichiometric amounts of carbonates, MnCO$_3$ and SrCO$_3$, according to the following chemical reaction:

$$2\text{H}_3\text{P}_2\text{O}_6 + 2\text{SrCO}_3 + \text{MnCO}_3 + \text{H}_2\text{O} \rightarrow \text{MnSr}_2(\text{P}_3\text{O}_9)_2\cdot4\text{H}_2\text{O} + 3\text{CO}_2$$

The solution abandoned for a few days, MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O is obtained in the form of crystals and powder having a pinkish white color. Na$_2$P$_2$O$_7$ was obtained by thermal treatment of sodium dihydrogenomonophosphate NaH$_2$PO$_4$, at 530°C for 5 hours in the air, according to the following chemical reaction:

$$3\text{NaH}_2\text{PO}_4 \rightarrow \text{Na}_2\text{P}_2\text{O}_7 + 3\text{H}_2\text{O}$$

*Corresponding author: Smail El Makhloufy
E mail: smail.elmakhloufy@gmail.com
DOI: http://dx.doi.org/10.13171/mjc941911141082sem

Received September 23, 2019
Accepted October 17, 2019
Published November 14, 2019
2.2 Chemical analyses and dehydration

The results of the chemical analyses, by atomic absorption and dehydration by heating up to 600°C the title compound, are in total accordance with the formula MnSr\((P_2O_5)\)_2.4H\(_2\)O and are gathered in Table 1, with a standard deviation of 0.001.

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Sr</th>
<th>Mn</th>
<th>H(_2)O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Experimental</td>
<td>5.902</td>
<td>1.971</td>
<td>1.002</td>
<td>3.991</td>
</tr>
</tbody>
</table>

2.3 Stability

The cyclotriphasphate tetrahydrate of manganese and distriontium, MnSr\((P_2O_5)\)_2.4H\(_2\)O, is stable in the conditions of temperature and pressure of our laboratory until 60°C. We have followed, by IR spectrometry, X-ray diffraction and thermogravimetric analyses, the stability of MnSr\((P_2O_5)\)_2.4H\(_2\)O during 11 months, and no evolution were observed.

2.4 Crystallographic characterization

The crystal of MnSr\((P_2O_5)\)_2.4H\(_2\)O has no isotypic compound. An automatic indexation using the Dicvol program 6, showed that compound crystallizes in the triclinic system with \(M(20)=29.6\) and \(F(30)=34.4\) and its space group is P-1. The unit-cell parameters calculated and refined by the least-squares method are as follows:

\[
a = 6.653(1)\text{Å}, \; b = 7.110(1)\text{Å}, \; c = 5.123(1)\text{Å}, \; \alpha = 103.37(2)^\circ, \; \beta = 95.81(2)^\circ, \; \gamma = 93.04(2)^\circ \quad \text{and} \quad Z = 1.\]

The X-ray diffractogram of MnSr\((P_2O_5)\)_2.4H\(_2\)O is reported in Figure 1 and Table 2.

<table>
<thead>
<tr>
<th>hkl</th>
<th>(d_{\text{cal}}) (Å)</th>
<th>(d_{\text{obs}}) (Å)</th>
<th>(100I/I_0)</th>
<th>hkl</th>
<th>(d_{\text{cal}}) (Å)</th>
<th>(d_{\text{obs}}) (Å)</th>
<th>(100I/I_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>6.89</td>
<td>-</td>
<td>-21-1</td>
<td>2.61</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>6.59</td>
<td>6.59</td>
<td>16</td>
<td>021</td>
<td>2.55</td>
<td>2.54</td>
<td>34</td>
</tr>
<tr>
<td>-110</td>
<td>4.96</td>
<td>4.59</td>
<td>34</td>
<td>01-2</td>
<td>2.53</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>001</td>
<td>4.94</td>
<td>-</td>
<td>-121</td>
<td>2.48</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>4.59</td>
<td>-</td>
<td>-220</td>
<td>2.48</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>01-1</td>
<td>4.57</td>
<td>4.57</td>
<td>10</td>
<td>002</td>
<td>2.47</td>
<td>2.47</td>
<td>05</td>
</tr>
<tr>
<td>10-1</td>
<td>4.20</td>
<td>-</td>
<td>-102</td>
<td>2.41</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11-1</td>
<td>3.86</td>
<td>3.88</td>
<td>09</td>
<td>03-1</td>
<td>2.30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>101</td>
<td>3.75</td>
<td>-</td>
<td>211</td>
<td>2.30</td>
<td>2.30</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>-11-1</td>
<td>3.66</td>
<td>3.66</td>
<td>13</td>
<td>300</td>
<td>2.20</td>
<td>2.20</td>
<td>15</td>
</tr>
<tr>
<td>011</td>
<td>3.63</td>
<td>-</td>
<td>130</td>
<td>2.12</td>
<td>2.11</td>
<td>05</td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>3.45</td>
<td>3.45</td>
<td>08</td>
<td>31-1</td>
<td>2.03</td>
<td>2.02</td>
<td>14</td>
</tr>
<tr>
<td>-111</td>
<td>3.36</td>
<td>3.36</td>
<td>16</td>
<td>-31-1</td>
<td>1.94</td>
<td>1.93</td>
<td>09</td>
</tr>
<tr>
<td>200</td>
<td>3.30</td>
<td>3.30</td>
<td>22</td>
<td>23-1</td>
<td>1.87</td>
<td>1.87</td>
<td>07</td>
</tr>
<tr>
<td>02-1</td>
<td>3.21</td>
<td>-</td>
<td>13-2</td>
<td>1.84</td>
<td>1.84</td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>-120</td>
<td>3.16</td>
<td>3.16</td>
<td>33</td>
<td>230</td>
<td>1.82</td>
<td>1.82</td>
<td>13</td>
</tr>
<tr>
<td>-210</td>
<td>3.07</td>
<td>-</td>
<td>-230</td>
<td>1.74</td>
<td>1.74</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>3.02</td>
<td>3.02</td>
<td>100</td>
<td>040</td>
<td>1.72</td>
<td>1.73</td>
<td>04</td>
</tr>
<tr>
<td>120</td>
<td>2.96</td>
<td>2.96</td>
<td>16</td>
<td>-14-4</td>
<td>1.72</td>
<td>1.72</td>
<td>05</td>
</tr>
<tr>
<td>20-1</td>
<td>2.90</td>
<td>-</td>
<td>-330</td>
<td>1.66</td>
<td>1.66</td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td>2.89</td>
<td>2.89</td>
<td>69</td>
<td>-312</td>
<td>1.65</td>
<td>1.65</td>
<td>08</td>
</tr>
<tr>
<td>210</td>
<td>2.89</td>
<td>-</td>
<td>140</td>
<td>1.64</td>
<td>1.64</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>-12-1</td>
<td>2.89</td>
<td>-</td>
<td>-420</td>
<td>1.54</td>
<td>1.53</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>21-1</td>
<td>2.75</td>
<td>2.70</td>
<td>17</td>
<td>041</td>
<td>1.52</td>
<td>1.52</td>
<td>04</td>
</tr>
<tr>
<td>-211</td>
<td>2.61</td>
<td>-</td>
<td>222</td>
<td>1.51</td>
<td>1.51</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>2.60</td>
<td>2.61</td>
<td>08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
possibly the water-cycle interaction and the rotation of the water molecules, six intense bands, of which four of strong intensity are observed at 1100 cm\(^{-1}\), 765 cm\(^{-1}\), two of them appear at (1297, 1255 cm\(^{-1}\)) and (1002, 975 cm\(^{-1}\)), two others of high intensity at 1110 and 765 cm\(^{-1}\). The other two bands are relatively thinner and of average intensity, at 1155 and 691 cm\(^{-1}\). In addition to these bands, the IR spectrum has two bands of very low intensity at 831 and 813 cm\(^{-1}\).7,8

- Between 640 and 400 cm\(^{-1}\), a domain characterizing the deformation vibrations of oxygens outside the P\(_3\)O\(_9\)\(^3+\) cycle (\(\delta\text{OPO}+\delta\text{POP}\)), at a frequency of 620 cm\(^{-1}\), 610 cm\(^{-1}\), 523 cm\(^{-1}\), 500 cm\(^{-1}\) and 450 cm\(^{-1}\), the band at 523 cm\(^{-1}\) is intense.9,10

2.5. IR Studies
2.5.1. Characterization of MnSr\(_2\)(P\(_3\)O\(_9\))\(_2\)·4H\(_2\)O by IR vibration spectrometry

The IR absorption spectrum of MnSr\(_2\)(P\(_3\)O\(_9\))\(_2\)·4H\(_2\)O is reported in Figure 2 and contains:

- In the spectral region 4000-3000 cm\(^{-1}\), characteristic of the OH valence bands, single broadband at 3450 cm\(^{-1}\);
- In the range, 1700-1600 cm\(^{-1}\), characteristic of the water deformation bands, two bands of very high intensity located respectively at 1640 cm\(^{-1}\) and 1606 cm\(^{-1}\).
- Between 1400 and 640 cm\(^{-1}\), the characteristic domain of the valence bands of the P\(_3\)O\(_9\)\(^3+\) ring,
Beyond 450°C, γ [Sr(P-O$_3$)$_2$]$_s$ begins to transform into the second allotropic form β, β[Sr(P-O$_3$)$_2$]$_s$. The X-ray pattern of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O heated to 550°C contains all the X-ray diffraction peaks of the two polyphosphates [Mn(P-O$_3$)$_2$]$_s$ and β[Sr(P-O$_3$)$_2$]$_s$.

2.5.2. Symmetry of the cycle P$_3$O$_9$3- contained in MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O

All the spectral characteristics of a cycle P$_3$O$_9$3-, deformed, of pseudo-symmetry C$_{3v}$, are in the absorption spectrum IR of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O. Indeed, the IR absorption spectrum of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O between 1400 and 400 cm$^{-1}$, contains in addition to the four very intense P$_3$O$_9$3- plan bands, which appear at (1297, 1255 cm$^{-1}$), 1150 cm$^{-1}$, (1002, 975 cm$^{-1}$) and 765 cm$^{-1}$ respectively, we observe the bands that characterize any low symmetry with respect to C$_{3v}$ symmetry. These are the bands observed at 1155 cm$^{-1}$ and 691 cm$^{-1}$. The presence of these last two bands and the splitting of the first bands are typical of a cycle with pseudo-symmetry C$_{3v}$.

2.6. Thermal analysis

2.6.1. Thermal dehydration of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O by step manner of temperatures, at atmospheric pressure, by X-ray diffraction

The examination of the X-ray diffraction of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O heated to 100°C (Figure 3b) shows that the product obtained is well crystallized. This would probably be the evolution towards an intermediate cyclotriphosphate MnSr$_2$(P$_3$O$_9$)$_2$.2H$_2$O according to the following reaction:

$$\text{MnSr}_2(\text{P}_3\text{O}_9)_2.4\text{H}_2\text{O} \rightarrow 100^\circ\text{C} \rightarrow \text{MnSr}_2(\text{P}_3\text{O}_9)_2.2\text{H}_2\text{O} + 2\text{H}_2\text{O}$$

The departure of the two water molecules of cyclotriphosphate MnSr$_2$(P$_3$O$_9$)$_2.2$H$_2$O between 150°C and 200°C, is responsible for the structural disorganization of the latter and consequently for obtaining a product of low crystallinity (Figure 3c).

At 250°C, a product is obtained whose X-ray diffractogram contains the characteristic lines of two infinite-chain polyphosphates which are: manganese polyphosphate, $\text{[Mn(P-O$_3$)$_2$]}_s$ and strontium polyphosphate form γ[Sr(P-O$_3$)$_2$]$_s$. So from 250°C, polyphosphate reorganization took place. Between 200 and 400 °C, when the temperature increases, the X-ray diffraction lines of the polyphosphate mixture ($\text{[Mn(P-O$_3$)$_2$]}_s$ + γ [Sr(P-O$_3$)$_2$]$_s$) increase in number and in intensity and up to 400 °C where appear all the X-ray diffraction lines of these two polyphosphates (Figure 3e).

The dehydration reaction of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O from 250 to 400°C as follows:

$$\text{MnSr}_2(\text{P}_3\text{O}_9)_2.4\text{H}_2\text{O} \rightarrow 200 - 400^\circ\text{C} \rightarrow \text{MnSr}_2(\text{P}_3\text{O}_9)_2.2\text{H}_2\text{O} + 4\text{H}_2\text{O}$$

(Mn[P-O$_3$]$_2$)$_s$ + γ[Sr(P-O$_3$)$_2$]$_s$ is, therefore, the final product resulting from the calcination of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O at 550°C under atmospheric pressure (Figure 3f).

<table>
<thead>
<tr>
<th>ν (cm$^{-1}$)</th>
<th>Vibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1640 1606</td>
<td>δ HOH</td>
</tr>
<tr>
<td>1297 1255</td>
<td>$\nu_\text{m},$ OPO$^{-}$</td>
</tr>
<tr>
<td>1155 1110</td>
<td>$\nu_\text{s},$ OPO$^{-}$</td>
</tr>
<tr>
<td>1002 975 831 813</td>
<td>$\nu_\text{m},$ POP</td>
</tr>
<tr>
<td>765 691</td>
<td>$\nu_\text{s},$ POP</td>
</tr>
<tr>
<td>620 610 523 500 450</td>
<td>δ OPO$^{-}$ + δ POP</td>
</tr>
</tbody>
</table>
Figure 3. X-ray diffractograms of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O (a) and its dehydration products at atmospheric pressure: (b)100°C, 200°C (d) evolution to the mixture (2γ[Sr(PO$_3$)$_2$]$_x$+[Mn(PO$_3$)$_2$]$_x$), (e) mixture (2γ[Sr(PO$_3$)$_2$]$_x$+[Mn(PO$_3$)$_2$]$_x$) and (f) mixture ([Mn(PO$_3$)$_2$]+2β[Sr(PO$_3$)$_2$])

2.6.3. Thermal dehydration of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O by step manner of temperatures, at atmospheric pressure, by IR vibration spectrometry

The IR absorption spectra of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O and its dehydration products at atmospheric pressure at 60°C are the same.

- At 100°C, the absorption spectrum IR (Figure 4), remains virtually unchanged in the field of vibration cycles. The removal at this stage of a part of water (about two water molecules) of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O does not affect the symmetry of the P$_3$O$_9$$^{2-}$ rings. Indeed, the examination of the IR absorption spectrum of MnSr$_2$(P$_3$O$_9$)$_2$.2H$_2$O, shows that the product obtained is a cyclotriphosphate.

- At 150°C, IR absorption spectrum of MnSr$_2$(P$_3$O$_9$)$_2$.4H$_2$O (Figure 4), shows three new bands of low intensity at 938, 881 and 844 cm$^{-1}$ and
which are not-existent in the IR spectrum of the initial phase. The band at 938 cm\(^{-1}\), whose intensity increases with temperature, indicates that it is a beginning of decondensation of the ring P\(_3\)O\(_9\)\(^3\) cycle 7.7.8.9.10.

- At 300°C, IR absorption spectrum of MnSr\(_2\)(P\(_3\)O\(_9\))\(_2\)-4H\(_2\)O (Figure 4), contains between 1400 and 600 cm\(^{-1}\), several frequencies which are all characteristic of polyphosphates with infinite chains, the vibration \(\nu_{as}\) POP, characteristic of polyphosphates with infinite chains, appears in the form of a very intense band at 944 cm\(^{-1}\).

Figure 4. IR Absorption Spectra of MnSr\(_2\)(P\(_3\)O\(_9\))\(_2\)-4H\(_2\)O and its thermal dehydration products at atmospheric pressure

2.6.4. Thermal dehydration of MnSr\(_2\)(P\(_3\)O\(_9\))\(_2\)-4H\(_2\)O by the linear rise of temperature, under atmospheric pressure

2.6.4.1. Thermogravimetric Analysis TGA

Thermal dehydration by linear temperature rise under atmospheric pressure with a heating rate of 5°C/min of the cyclotriphosphate, MnSr\(_2\)(P\(_3\)O\(_9\))\(_2\)-4H\(_2\)O, gave the thermogravimetric curves shown in Figure 5. The thermogram obtained during the dehydration can be divided into three stages which are not very distinct because they are difficult to separate:

- The first step, between 70°C and 208°C, during which the loss of mass is of 4.29% corresponds to the elimination of 1.85 moles of water. During this stage, the departure of water starts relatively quickly compared to the other two stages. The DTG thermogram indicates two minimums corresponding to two temperatures 91°C and 141°C, for which the dehydration rates are maximum 16;

- The second step between 208°C and 338°C, during which there is a loss of mass of 3.34%, which corresponds to the departure of 1.45 moles of water. During this step, the DTG thermogram shows a peak whose top temperature is 216°C and a shoulder at 235°C 17.

- The third stage, between 338°C and 378°C, for which the departure of the water takes place more slowly than the second stage. Between these temperatures, the mass loss is 1.63% and corresponds to 0.7 mole of water. The DTG thermogram shows an isolated and intense peak at 348°C. At 387°C, the overall mass loss recorded is 9.26% of the total mass of hydrate MnSr\(_2\)(P\(_3\)O\(_9\))\(_2\)-4H\(_2\)O and therefore corresponds to the removal of four moles of water per unit formula. The thermal dehydration of MnSr\(_2\)(P\(_3\)O\(_9\))\(_2\)-4H\(_2\)O is therefore total at this temperature. At temperatures above 380°C, no loss of mass is observed.
2.6.4.2. Differential Thermal Analysis (DTA)

The differential thermal analysis curves (DTA) (Figure 6), carried out with a heating rate of 5°C/min, contains an exothermic peak and five endothermic peaks. The examination of the thermogram DTA, in the light of the DTG and DSC thermograms, carried out under the same conditions, shows that all the endothermic peaks are due to the departure of the water which is carried out in three stages. Indeed, at the endothermic peaks, whose peak temperatures at 93°C, 143°C, 217°C, 236°C and 351°C correspond to the DTG peaks whose peaks are observed at 91°C, 141°C, 216°C, 235°C and 348°C respectively.

The first two DTA peaks, at 93°C and 143°C, correspond to the start of departure of the water molecules which occurs during the first stage and probably concerns the first type of water molecules. The two DTA peaks, located at 217°C and 236°C, correspond to the departure of one mole of water which takes place during the second step and the last endothermic peak, whose peak is at 351°C corresponds to the departure of water that intervenes during the third and final stage. The exothermic peak whose summit is at 138°C is due to the crystallization of the intermediate hydrate, MnSr$_2$(P$_3$O$_9$)$_2$.2H$_2$O.
- The exothermic peak at 146°C could, therefore, be attributed to the crystallization of the dehydrated intermediate, MnSr₂(P₃O₉)₂·2H₂O.

- Based on this X-ray diffraction results, we were able to attribute the observed exothermic peak in the DSC curve at 169°C to the crystallization of the mixture ([Mn(PO₃)₂]ₙ+2[Sr(PO₃)₂]₂₋).

- The last exothermic peak observed in the DSC curve at 464°C corresponds to the gaseous release of the remaining two water molecules of MnSr₂(P₃O₉)₂·2H₂O. This crystallization is accompanied by an enthalpy decrease of 8.75 Kcal/mol (Table 4).

2.6.4.3. Differential scanning calorimetric (DSC)

The DSC curve of MnSr₂(P₃O₉)₂·4H₂O (Figure 7), with a heating rate of 5°C/min has five peaks. Of these five peaks, two are endothermic and are respectively at 118°C and 233°C and the other three are exothermic and are located at 146°C, 169°C and 464°C.

- The peak observed at 118°C corresponds to the departure of two water molecules. The second endothermic peak at 233°C is attributable to the gaseous release of the remaining two water molecules of MnSr₂(P₃O₉)₂·4H₂O.

Table 4. Differential scanning calorimetry DSC (v = 5°C / min) of MnSr₂(P₃O₉)₂·4H₂O.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Tᵢ (k)</th>
<th>T_max (k)</th>
<th>T_f (K)</th>
<th>ΔH (kJ/mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First peak</td>
<td>374</td>
<td>391</td>
<td>410</td>
<td>19.65</td>
</tr>
<tr>
<td>Second peak</td>
<td>410</td>
<td>419</td>
<td>432</td>
<td>-11.84</td>
</tr>
<tr>
<td>Third peak</td>
<td>434</td>
<td>442</td>
<td>457</td>
<td>-10.51</td>
</tr>
<tr>
<td>Fourth peak</td>
<td>486</td>
<td>506</td>
<td>560</td>
<td>120.01</td>
</tr>
<tr>
<td>Fifth peak</td>
<td>714</td>
<td>737</td>
<td>757</td>
<td>-8.75</td>
</tr>
</tbody>
</table>

Figure 7. DSC curve MnSr₂(P₃O₉)₂·4H₂O at rising temperature (5°C min⁻¹/P = 1 atm)

We have rescaled the differential scanning calorimetry (DSC) of MnSr₂(P₃O₉)₂·4H₂O, with a heating rate of 10°C/min between 25°C and 400°C (Figure 8). The two exothermic peaks respectively at 146°C and 169°C with a temperature rise of 5°C/min (Figure 7), are superimposed on a single exothermic peak at 195°C when the speed heating is 10°C/min (Figure 8). The heating rate is, therefore, an essential factor. In our case, there is a superposition of two phenomena at high speed, whereas if the heating rate is low, the two phenomena are separated 15.
3. Conclusion
The present work concerns the preparation, crystallographic characterization and vibrational study of a new cyclotriphosphate tetrahydrate of manganese and distrotonium, MnSr₂(P₂O₇)₂·4H₂O. The thermal evolution of MnSr₂(P₂O₇)₂·4H₂O has been followed by thermal analyses TGA and DTA, X-ray diffraction and infrared spectrometry. The calcination of MnSr₂(P₂O₇)₂·4H₂O at 400°C results in a mixture of infinite chain polyphosphates, ([Mn(P₂O₇)₂]ₙ+2γ[Sr(P₂O₇)₂]₁). X-ray diffraction has shown that above 450°C there is an allotropic transformation of γ[Sr(P₂O₇)₂]₁ to β[Sr(P₂O₇)₂]. The final product resulting from the thermal dehydration of MnSr₂(P₂O₇)₂·4H₂O at 550°C is the polyphosphate mixture ([Mn(P₂O₇)₂]ₙ+2β[Sr(P₂O₇)₂]₁).

4. Acknowledgements
The authors thank the Laboratory of Chemistry-Physics of Materials, Faculty of Sciences Ben M’Sik B. P. 7955, Hassan II University of Casablanca, Morocco for infrared spectroscopy measurements.

5. Experimental
5.1. Chemical analyses
Chemical analyses were performed on a spectrophotometer of atomic absorption-type VARIAN AA-475.

5.2. Infrared spectrometry
Spectra were recorded in the range 4000-400cm⁻¹ with a Perkin-Elmer IR 983G spectrophotometer, using samples dispersed in spectroscopically pure KBr pellets.

5.3. Thermal behavior
Thermal analyses TGA-DTA coupled were performed using the multimodule 92 Setaram Analyzer operating from room temperature up to 1400°C, in a platinum crucible, at various heating rates from 1 to 15°C/min. Differential scanning calorimetry (DSC) was carried out with a Setaram DSC 92 apparatus.

5.4. X-ray diffraction
Powder diffraction patterns for the two title compound were collected with a SIEMENS D 5000 diffractometer using Cu Kα₁ radiation (λ= 1.5406 Å). The experimental 2θ range was from 5 to 70° (2θ) with a step size of 0.01° and a counting time of the 30s per step. The program of graphic tool for powder diffraction named WinPLOTR was used to determine the observed diffraction peak positions for MnSr₂(P₂O₇)₂·4H₂O. The unit-cell parameters of MnSr₂(P₂O₇)₂·4H₂O were calculated using the computer program Dicvol°.

References
3- M. Tridane, S. Belaaouad, K. Sbai, Chemical preparations and crystal data for eight new condensed phosphates, Solid-state sciences, 2000, 7, 701-704. DOI:10.1016/S1293-2558(00)01081-5.
4- K. Sbai, M. Tridane, A. Abouimrane, S. Belaaouad, A. Cherquou, Chemical preparation and crystal data for two new cyclotriphosphates.
M\(^{4+}\)K\(_{3}\)(P\(_{3}\)O\(_{10}\))\(_{2}\) (M\(^{4+}\)= Co\(^{2+}\) and Mn\(^{2+}\)), Powder Diffraction, 2003, 18(3), 224-6.
DOI:10.1007/s100190000057

DOI:10.1154/1.1420710

DOI:10.1107/S002188980414876.

DOI:10.1016/j.cdc.2018.01.002.

DOI:10.1080/00958972.2018.1528579.

DOI:10.13171/mjc841905308mb.

DOI:10.1107/S0108270199003637

DOI:10.1016/j.solidstatesciences.2005.06.014.

DOI: 10.3363/prb.21.60.

DOI:10.3363/prb.23.67.